pyramidbox.py 15.7 KB
Newer Older
B
baiyfbupt 已提交
1 2 3 4
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

5
import numpy as np
B
baiyf 已提交
6
import six
7 8 9 10
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.initializer import Xavier
from paddle.fluid.initializer import Constant
11
from paddle.fluid.initializer import Bilinear
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
from paddle.fluid.regularizer import L2Decay


def conv_bn(input, filter, ksize, stride, padding, act='relu', bias_attr=False):
    conv = fluid.layers.conv2d(
        input=input,
        filter_size=ksize,
        num_filters=filter,
        stride=stride,
        padding=padding,
        act=None,
        bias_attr=bias_attr)
    return fluid.layers.batch_norm(input=conv, act=act)


def conv_block(input, groups, filters, ksizes, strides=None, with_pool=True):
    assert len(filters) == groups
    assert len(ksizes) == groups
    strides = [1] * groups if strides is None else strides
    w_attr = ParamAttr(learning_rate=1., initializer=Xavier())
    b_attr = ParamAttr(learning_rate=2., regularizer=L2Decay(0.))
    conv = input
B
baiyf 已提交
34
    for i in six.moves.xrange(groups):
35 36 37 38 39
        conv = fluid.layers.conv2d(
            input=conv,
            num_filters=filters[i],
            filter_size=ksizes[i],
            stride=strides[i],
B
baiyf 已提交
40
            padding=(ksizes[i] - 1) // 2,
41 42 43 44 45
            param_attr=w_attr,
            bias_attr=b_attr,
            act='relu')
    if with_pool:
        pool = fluid.layers.pool2d(
B
baiyfbupt 已提交
46 47 48 49 50
            input=conv,
            pool_size=2,
            pool_type='max',
            pool_stride=2,
            ceil_mode=True)
Q
qingqing01 已提交
51
        return conv, pool
52 53 54 55 56
    else:
        return conv


class PyramidBox(object):
Q
qingqing01 已提交
57 58
    def __init__(self,
                 data_shape,
Q
qingqing01 已提交
59
                 num_classes=None,
60
                 use_transposed_conv2d=True,
Q
qingqing01 已提交
61 62
                 is_infer=False,
                 sub_network=False):
63 64 65
        """
        TODO(qingqing): add comments.
        """
66 67 68
        self.data_shape = data_shape
        self.min_sizes = [16., 32., 64., 128., 256., 512.]
        self.steps = [4., 8., 16., 32., 64., 128.]
69 70
        self.num_classes = num_classes
        self.use_transposed_conv2d = use_transposed_conv2d
71
        self.is_infer = is_infer
72
        self.sub_network = sub_network
73

74
        # the base network is VGG with atrous layers
75 76
        self._input()
        self._vgg()
77 78 79 80
        if sub_network:
            self._low_level_fpn()
            self._cpm_module()
            self._pyramidbox()
Q
qingqing01 已提交
81 82
        else:
            self._vgg_ssd()
83

84 85 86 87
    def feeds(self):
        if self.is_infer:
            return [self.image]
        else:
88
            return [self.image, self.face_box, self.head_box, self.gt_label]
89

90 91 92 93
    def _input(self):
        self.image = fluid.layers.data(
            name='image', shape=self.data_shape, dtype='float32')
        if not self.is_infer:
94 95 96 97
            self.face_box = fluid.layers.data(
                name='face_box', shape=[4], dtype='float32', lod_level=1)
            self.head_box = fluid.layers.data(
                name='head_box', shape=[4], dtype='float32', lod_level=1)
98 99 100 101
            self.gt_label = fluid.layers.data(
                name='gt_label', shape=[1], dtype='int32', lod_level=1)

    def _vgg(self):
Q
qingqing01 已提交
102 103
        self.conv1, self.pool1 = conv_block(self.image, 2, [64] * 2, [3] * 2)
        self.conv2, self.pool2 = conv_block(self.pool1, 2, [128] * 2, [3] * 2)
104 105

        #priorbox min_size is 16
Q
qingqing01 已提交
106
        self.conv3, self.pool3 = conv_block(self.pool2, 3, [256] * 3, [3] * 3)
107
        #priorbox min_size is 32
Q
qingqing01 已提交
108
        self.conv4, self.pool4 = conv_block(self.pool3, 3, [512] * 3, [3] * 3)
109
        #priorbox min_size is 64
Q
qingqing01 已提交
110
        self.conv5, self.pool5 = conv_block(self.pool4, 3, [512] * 3, [3] * 3)
111 112

        # fc6 and fc7 in paper, priorbox min_size is 128
Q
qingqing01 已提交
113 114
        self.conv6 = conv_block(
            self.pool5, 2, [1024, 1024], [3, 1], with_pool=False)
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
        # conv6_1 and conv6_2 in paper, priorbox min_size is 256
        self.conv7 = conv_block(
            self.conv6, 2, [256, 512], [1, 3], [1, 2], with_pool=False)
        # conv7_1 and conv7_2 in paper, priorbox mini_size is 512
        self.conv8 = conv_block(
            self.conv7, 2, [128, 256], [1, 3], [1, 2], with_pool=False)

    def _low_level_fpn(self):
        """
        Low-level feature pyramid network.
        """

        def fpn(up_from, up_to):
            ch = up_to.shape[1]
            b_attr = ParamAttr(learning_rate=2., regularizer=L2Decay(0.))
            conv1 = fluid.layers.conv2d(
                up_from, ch, 1, act='relu', bias_attr=b_attr)
132 133 134 135 136 137 138 139 140 141 142 143 144 145
            if self.use_transposed_conv2d:
                w_attr = ParamAttr(
                    learning_rate=0.,
                    regularizer=L2Decay(0.),
                    initializer=Bilinear())
                upsampling = fluid.layers.conv2d_transpose(
                    conv1,
                    ch,
                    output_size=None,
                    filter_size=4,
                    padding=1,
                    stride=2,
                    groups=ch,
                    param_attr=w_attr,
146 147
                    bias_attr=False,
                    use_cudnn=True)
148 149 150 151
            else:
                upsampling = fluid.layers.resize_bilinear(
                    conv1, out_shape=up_to.shape[2:])

152 153
            conv2 = fluid.layers.conv2d(
                up_to, ch, 1, act='relu', bias_attr=b_attr)
B
baiyfbupt 已提交
154 155
            if self.is_infer:
                upsampling = fluid.layers.crop(upsampling, shape=conv2)
156
            # eltwise mul
157
            conv_fuse = upsampling * conv2
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
            return conv_fuse

        self.lfpn2_on_conv5 = fpn(self.conv6, self.conv5)
        self.lfpn1_on_conv4 = fpn(self.lfpn2_on_conv5, self.conv4)
        self.lfpn0_on_conv3 = fpn(self.lfpn1_on_conv4, self.conv3)

    def _cpm_module(self):
        """
        Context-sensitive Prediction Module 
        """

        def cpm(input):
            # residual
            branch1 = conv_bn(input, 1024, 1, 1, 0, None)
            branch2a = conv_bn(input, 256, 1, 1, 0, act='relu')
            branch2b = conv_bn(branch2a, 256, 3, 1, 1, act='relu')
            branch2c = conv_bn(branch2b, 1024, 1, 1, 0, None)
            sum = branch1 + branch2c
            rescomb = fluid.layers.relu(x=sum)

            # ssh
            b_attr = ParamAttr(learning_rate=2., regularizer=L2Decay(0.))
            ssh_1 = fluid.layers.conv2d(rescomb, 256, 3, 1, 1, bias_attr=b_attr)
            ssh_dimred = fluid.layers.conv2d(
                rescomb, 128, 3, 1, 1, act='relu', bias_attr=b_attr)
            ssh_2 = fluid.layers.conv2d(
                ssh_dimred, 128, 3, 1, 1, bias_attr=b_attr)
            ssh_3a = fluid.layers.conv2d(
                ssh_dimred, 128, 3, 1, 1, act='relu', bias_attr=b_attr)
            ssh_3b = fluid.layers.conv2d(ssh_3a, 128, 3, 1, 1, bias_attr=b_attr)

            ssh_concat = fluid.layers.concat([ssh_1, ssh_2, ssh_3b], axis=1)
            ssh_out = fluid.layers.relu(x=ssh_concat)
            return ssh_out

        self.ssh_conv3 = cpm(self.lfpn0_on_conv3)
        self.ssh_conv4 = cpm(self.lfpn1_on_conv4)
        self.ssh_conv5 = cpm(self.lfpn2_on_conv5)
        self.ssh_conv6 = cpm(self.conv6)
        self.ssh_conv7 = cpm(self.conv7)
        self.ssh_conv8 = cpm(self.conv8)

    def _l2_norm_scale(self, input, init_scale=1.0, channel_shared=False):
        from paddle.fluid.layer_helper import LayerHelper
        helper = LayerHelper("Scale")
        l2_norm = fluid.layers.l2_normalize(
            input, axis=1)  # l2 norm along channel
        shape = [1] if channel_shared else [input.shape[1]]
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=shape,
            dtype=input.dtype,
            default_initializer=Constant(init_scale))
        out = fluid.layers.elementwise_mul(
            x=l2_norm, y=scale, axis=-1 if channel_shared else 1)
        return out

    def _pyramidbox(self):
        """
        Get prior-boxes and pyramid-box
        """
Q
qingqing01 已提交
219 220 221 222
        self.ssh_conv3_norm = self._l2_norm_scale(
            self.ssh_conv3, init_scale=10.)
        self.ssh_conv4_norm = self._l2_norm_scale(self.ssh_conv4, init_scale=8.)
        self.ssh_conv5_norm = self._l2_norm_scale(self.ssh_conv5, init_scale=5.)
223 224 225

        def permute_and_reshape(input, last_dim):
            trans = fluid.layers.transpose(input, perm=[0, 2, 3, 1])
226
            compile_shape = [
B
baiyf 已提交
227
                trans.shape[0], np.prod(trans.shape[1:]) // last_dim, last_dim
228
            ]
229 230 231 232
            run_shape = fluid.layers.assign(
                np.array([0, -1, last_dim]).astype("int32"))
            return fluid.layers.reshape(
                trans, shape=compile_shape, actual_shape=run_shape)
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268

        face_locs, face_confs = [], []
        head_locs, head_confs = [], []
        boxes, vars = [], []
        inputs = [
            self.ssh_conv3_norm, self.ssh_conv4_norm, self.ssh_conv5_norm,
            self.ssh_conv6, self.ssh_conv7, self.ssh_conv8
        ]
        b_attr = ParamAttr(learning_rate=2., regularizer=L2Decay(0.))
        for i, input in enumerate(inputs):
            mbox_loc = fluid.layers.conv2d(input, 8, 3, 1, 1, bias_attr=b_attr)
            face_loc, head_loc = fluid.layers.split(
                mbox_loc, num_or_sections=2, dim=1)
            face_loc = permute_and_reshape(face_loc, 4)
            head_loc = permute_and_reshape(head_loc, 4)

            mbox_conf = fluid.layers.conv2d(input, 6, 3, 1, 1, bias_attr=b_attr)
            face_conf1, face_conf3, head_conf = fluid.layers.split(
                mbox_conf, num_or_sections=[1, 3, 2], dim=1)
            face_conf3_maxin = fluid.layers.reduce_max(
                face_conf3, dim=1, keep_dim=True)
            face_conf = fluid.layers.concat(
                [face_conf1, face_conf3_maxin], axis=1)

            face_conf = permute_and_reshape(face_conf, 2)
            head_conf = permute_and_reshape(head_conf, 2)

            face_locs.append(face_loc)
            face_confs.append(face_conf)

            head_locs.append(head_loc)
            head_confs.append(head_conf)

            box, var = fluid.layers.prior_box(
                input,
                self.image,
Q
qingqing01 已提交
269
                min_sizes=[self.min_sizes[i]],
270 271
                steps=[self.steps[i]] * 2,
                aspect_ratios=[1.],
272 273
                clip=False,
                flip=True,
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
                offset=0.5)
            box = fluid.layers.reshape(box, shape=[-1, 4])
            var = fluid.layers.reshape(var, shape=[-1, 4])

            boxes.append(box)
            vars.append(var)

        self.face_mbox_loc = fluid.layers.concat(face_locs, axis=1)
        self.face_mbox_conf = fluid.layers.concat(face_confs, axis=1)

        self.head_mbox_loc = fluid.layers.concat(head_locs, axis=1)
        self.head_mbox_conf = fluid.layers.concat(head_confs, axis=1)

        self.prior_boxes = fluid.layers.concat(boxes)
        self.box_vars = fluid.layers.concat(vars)

Q
qingqing01 已提交
290 291 292 293
    def _vgg_ssd(self):
        self.conv3_norm = self._l2_norm_scale(self.conv3, init_scale=10.)
        self.conv4_norm = self._l2_norm_scale(self.conv4, init_scale=8.)
        self.conv5_norm = self._l2_norm_scale(self.conv5, init_scale=5.)
294

Q
qingqing01 已提交
295 296
        def permute_and_reshape(input, last_dim):
            trans = fluid.layers.transpose(input, perm=[0, 2, 3, 1])
297
            compile_shape = [
B
baiyf 已提交
298
                trans.shape[0], np.prod(trans.shape[1:]) // last_dim, last_dim
Q
qingqing01 已提交
299
            ]
300 301 302 303
            run_shape = fluid.layers.assign(
                np.array([0, -1, last_dim]).astype("int32"))
            return fluid.layers.reshape(
                trans, shape=compile_shape, actual_shape=run_shape)
Q
qingqing01 已提交
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353

        locs, confs = [], []
        boxes, vars = [], []
        b_attr = ParamAttr(learning_rate=2., regularizer=L2Decay(0.))

        # conv3
        mbox_loc = fluid.layers.conv2d(
            self.conv3_norm, 4, 3, 1, 1, bias_attr=b_attr)
        loc = permute_and_reshape(mbox_loc, 4)
        mbox_conf = fluid.layers.conv2d(
            self.conv3_norm, 4, 3, 1, 1, bias_attr=b_attr)
        conf1, conf3 = fluid.layers.split(
            mbox_conf, num_or_sections=[1, 3], dim=1)
        conf3_maxin = fluid.layers.reduce_max(conf3, dim=1, keep_dim=True)
        conf = fluid.layers.concat([conf1, conf3_maxin], axis=1)
        conf = permute_and_reshape(conf, 2)
        box, var = fluid.layers.prior_box(
            self.conv3_norm,
            self.image,
            min_sizes=[16.],
            steps=[4, 4],
            aspect_ratios=[1.],
            clip=False,
            flip=True,
            offset=0.5)
        box = fluid.layers.reshape(box, shape=[-1, 4])
        var = fluid.layers.reshape(var, shape=[-1, 4])

        locs.append(loc)
        confs.append(conf)
        boxes.append(box)
        vars.append(var)

        min_sizes = [32., 64., 128., 256., 512.]
        steps = [8., 16., 32., 64., 128.]
        inputs = [
            self.conv4_norm, self.conv5_norm, self.conv6, self.conv7, self.conv8
        ]
        for i, input in enumerate(inputs):
            mbox_loc = fluid.layers.conv2d(input, 4, 3, 1, 1, bias_attr=b_attr)
            loc = permute_and_reshape(mbox_loc, 4)

            mbox_conf = fluid.layers.conv2d(input, 2, 3, 1, 1, bias_attr=b_attr)
            conf = permute_and_reshape(mbox_conf, 2)
            box, var = fluid.layers.prior_box(
                input,
                self.image,
                min_sizes=[min_sizes[i]],
                steps=[steps[i]] * 2,
                aspect_ratios=[1.],
354 355
                clip=False,
                flip=True,
Q
qingqing01 已提交
356 357 358 359 360 361 362 363 364 365 366 367 368
                offset=0.5)
            box = fluid.layers.reshape(box, shape=[-1, 4])
            var = fluid.layers.reshape(var, shape=[-1, 4])

            locs.append(loc)
            confs.append(conf)
            boxes.append(box)
            vars.append(var)

        self.face_mbox_loc = fluid.layers.concat(locs, axis=1)
        self.face_mbox_conf = fluid.layers.concat(confs, axis=1)
        self.prior_boxes = fluid.layers.concat(boxes)
        self.box_vars = fluid.layers.concat(vars)
Q
qingqing01 已提交
369 370 371 372 373 374 375 376 377 378 379

    def vgg_ssd_loss(self):
        loss = fluid.layers.ssd_loss(
            self.face_mbox_loc,
            self.face_mbox_conf,
            self.face_box,
            self.gt_label,
            self.prior_boxes,
            self.box_vars,
            overlap_threshold=0.35,
            neg_overlap=0.35)
380 381 382
        loss = fluid.layers.reduce_sum(loss)
        return loss

383 384
    def train(self):
        face_loss = fluid.layers.ssd_loss(
Q
qingqing01 已提交
385 386 387 388 389 390 391 392
            self.face_mbox_loc,
            self.face_mbox_conf,
            self.face_box,
            self.gt_label,
            self.prior_boxes,
            self.box_vars,
            overlap_threshold=0.35,
            neg_overlap=0.35)
393
        face_loss.persistable = True
394
        head_loss = fluid.layers.ssd_loss(
Q
qingqing01 已提交
395 396 397 398 399 400 401 402
            self.head_mbox_loc,
            self.head_mbox_conf,
            self.head_box,
            self.gt_label,
            self.prior_boxes,
            self.box_vars,
            overlap_threshold=0.35,
            neg_overlap=0.35)
403
        head_loss.persistable = True
404
        face_loss = fluid.layers.reduce_sum(face_loss)
405
        face_loss.persistable = True
406
        head_loss = fluid.layers.reduce_sum(head_loss)
407
        head_loss.persistable = True
408
        total_loss = face_loss + head_loss
409
        total_loss.persistable = True
410
        return face_loss, head_loss, total_loss
411

B
baiyfbupt 已提交
412 413 414 415 416
    def infer(self, main_program=None):
        if main_program is None:
            test_program = fluid.default_main_program().clone(for_test=True)
        else:
            test_program = main_program.clone(for_test=True)
417 418 419 420 421 422
        with fluid.program_guard(test_program):
            face_nmsed_out = fluid.layers.detection_output(
                self.face_mbox_loc,
                self.face_mbox_conf,
                self.prior_boxes,
                self.box_vars,
423 424 425
                nms_threshold=0.3,
                nms_top_k=5000,
                keep_top_k=750,
Q
qingqing01 已提交
426
                score_threshold=0.01)
Q
qingqing01 已提交
427
        return test_program, face_nmsed_out