Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
5abba732
M
models
项目概览
PaddlePaddle
/
models
1 年多 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
5abba732
编写于
6月 07, 2018
作者:
Q
qingqing01
提交者:
GitHub
6月 07, 2018
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add infer scripts. (#966)
上级
b6c505b8
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
172 addition
and
44 deletion
+172
-44
fluid/face_detection/infer.py
fluid/face_detection/infer.py
+107
-0
fluid/face_detection/pyramidbox.py
fluid/face_detection/pyramidbox.py
+35
-40
fluid/face_detection/reader.py
fluid/face_detection/reader.py
+26
-0
fluid/face_detection/train.py
fluid/face_detection/train.py
+4
-4
未找到文件。
fluid/face_detection/infer.py
0 → 100644
浏览文件 @
5abba732
import
os
import
time
import
numpy
as
np
import
argparse
import
functools
from
PIL
import
Image
from
PIL
import
ImageDraw
import
paddle
import
paddle.fluid
as
fluid
import
reader
from
pyramidbox
import
PyramidBox
from
utility
import
add_arguments
,
print_arguments
parser
=
argparse
.
ArgumentParser
(
description
=
__doc__
)
add_arg
=
functools
.
partial
(
add_arguments
,
argparser
=
parser
)
# yapf: disable
add_arg
(
'use_gpu'
,
bool
,
True
,
"Whether use GPU."
)
add_arg
(
'use_pyramidbox'
,
bool
,
False
,
"Whether use PyramidBox model."
)
add_arg
(
'confs_threshold'
,
float
,
0.15
,
"Confidence threshold to draw bbox."
)
add_arg
(
'image_path'
,
str
,
''
,
"The data root path."
)
add_arg
(
'model_dir'
,
str
,
''
,
"The model path."
)
add_arg
(
'resize_h'
,
int
,
0
,
"The resized image height."
)
add_arg
(
'resize_w'
,
int
,
0
,
"The resized image height."
)
# yapf: enable
def
draw_bounding_box_on_image
(
image_path
,
nms_out
,
confs_threshold
):
image
=
Image
.
open
(
image_path
)
draw
=
ImageDraw
.
Draw
(
image
)
im_width
,
im_height
=
image
.
size
for
dt
in
nms_out
:
category_id
,
score
,
xmin
,
ymin
,
xmax
,
ymax
=
dt
.
tolist
()
if
score
<
confs_threshold
:
continue
bbox
=
dt
[
2
:]
xmin
,
ymin
,
xmax
,
ymax
=
bbox
(
left
,
right
,
top
,
bottom
)
=
(
xmin
*
im_width
,
xmax
*
im_width
,
ymin
*
im_height
,
ymax
*
im_height
)
draw
.
line
(
[(
left
,
top
),
(
left
,
bottom
),
(
right
,
bottom
),
(
right
,
top
),
(
left
,
top
)],
width
=
4
,
fill
=
'red'
)
image_name
=
image_path
.
split
(
'/'
)[
-
1
]
print
(
"image with bbox drawed saved as {}"
.
format
(
image_name
))
image
.
save
(
image_name
)
def
infer
(
args
,
data_args
):
num_classes
=
2
infer_reader
=
reader
.
infer
(
data_args
,
args
.
image_path
)
data
=
infer_reader
()
if
args
.
resize_h
and
args
.
resize_w
:
image_shape
=
[
3
,
args
.
resize_h
,
args
.
resize_w
]
else
:
image_shape
=
data
.
shape
[
1
:]
fetches
=
[]
network
=
PyramidBox
(
image_shape
,
num_classes
,
sub_network
=
args
.
use_pyramidbox
,
is_infer
=
True
)
infer_program
,
nmsed_out
=
network
.
infer
()
fetches
=
[
nmsed_out
]
place
=
fluid
.
CUDAPlace
(
0
)
if
args
.
use_gpu
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
model_dir
=
args
.
model_dir
if
not
os
.
path
.
exists
(
model_dir
):
raise
ValueError
(
"The model path [%s] does not exist."
%
(
model_dir
))
def
if_exist
(
var
):
return
os
.
path
.
exists
(
os
.
path
.
join
(
model_dir
,
var
.
name
))
fluid
.
io
.
load_vars
(
exe
,
model_dir
,
predicate
=
if_exist
)
feed
=
{
'image'
:
fluid
.
create_lod_tensor
(
data
,
[],
place
)}
predict
,
=
exe
.
run
(
infer_program
,
feed
=
feed
,
fetch_list
=
fetches
,
return_numpy
=
False
)
predict
=
np
.
array
(
predict
)
draw_bounding_box_on_image
(
args
.
image_path
,
predict
,
args
.
confs_threshold
)
if
__name__
==
'__main__'
:
args
=
parser
.
parse_args
()
print_arguments
(
args
)
data_dir
=
'data/WIDERFACE/WIDER_val/images/'
file_list
=
'label/val_gt_widerface.res'
data_args
=
reader
.
Settings
(
data_dir
=
data_dir
,
resize_h
=
args
.
resize_h
,
resize_w
=
args
.
resize_w
,
mean_value
=
[
104.
,
117.
,
123
],
apply_distort
=
False
,
apply_expand
=
False
,
ap_version
=
'11point'
)
infer
(
args
,
data_args
=
data_args
)
fluid/face_detection/pyramidbox.py
浏览文件 @
5abba732
...
...
@@ -45,12 +45,17 @@ def conv_block(input, groups, filters, ksizes, strides=None, with_pool=True):
class
PyramidBox
(
object
):
def
__init__
(
self
,
data_shape
,
is_infer
=
False
,
sub_network
=
False
):
def
__init__
(
self
,
data_shape
,
num_classes
,
is_infer
=
False
,
sub_network
=
False
):
self
.
data_shape
=
data_shape
self
.
min_sizes
=
[
16.
,
32.
,
64.
,
128.
,
256.
,
512.
]
self
.
steps
=
[
4.
,
8.
,
16.
,
32.
,
64.
,
128.
]
self
.
is_infer
=
is_infer
self
.
sub_network
=
sub_network
self
.
num_classes
=
num_classes
# the base network is VGG with atrous layers
self
.
_input
()
...
...
@@ -59,6 +64,8 @@ class PyramidBox(object):
self
.
_low_level_fpn
()
self
.
_cpm_module
()
self
.
_pyramidbox
()
else
:
self
.
_vgg_ssd
()
def
feeds
(
self
):
if
self
.
is_infer
:
...
...
@@ -188,9 +195,10 @@ class PyramidBox(object):
"""
Get prior-boxes and pyramid-box
"""
self
.
ssh_conv3_norm
=
self
.
_l2_norm_scale
(
self
.
ssh_conv3
)
self
.
ssh_conv4_norm
=
self
.
_l2_norm_scale
(
self
.
ssh_conv4
)
self
.
ssh_conv5_norm
=
self
.
_l2_norm_scale
(
self
.
ssh_conv5
)
self
.
ssh_conv3_norm
=
self
.
_l2_norm_scale
(
self
.
ssh_conv3
,
init_scale
=
10.
)
self
.
ssh_conv4_norm
=
self
.
_l2_norm_scale
(
self
.
ssh_conv4
,
init_scale
=
8.
)
self
.
ssh_conv5_norm
=
self
.
_l2_norm_scale
(
self
.
ssh_conv5
,
init_scale
=
5.
)
def
permute_and_reshape
(
input
,
last_dim
):
trans
=
fluid
.
layers
.
transpose
(
input
,
perm
=
[
0
,
2
,
3
,
1
])
...
...
@@ -253,10 +261,10 @@ class PyramidBox(object):
self
.
prior_boxes
=
fluid
.
layers
.
concat
(
boxes
)
self
.
box_vars
=
fluid
.
layers
.
concat
(
vars
)
def
vgg_ssd
(
self
,
num_classes
,
image_shape
):
self
.
conv3_norm
=
self
.
_l2_norm_scale
(
self
.
conv3
)
self
.
conv4_norm
=
self
.
_l2_norm_scale
(
self
.
conv4
)
self
.
conv5_norm
=
self
.
_l2_norm_scale
(
self
.
conv5
)
def
_vgg_ssd
(
self
):
self
.
conv3_norm
=
self
.
_l2_norm_scale
(
self
.
conv3
,
init_scale
=
10.
)
self
.
conv4_norm
=
self
.
_l2_norm_scale
(
self
.
conv4
,
init_scale
=
8.
)
self
.
conv5_norm
=
self
.
_l2_norm_scale
(
self
.
conv5
,
init_scale
=
5.
)
mbox_locs
,
mbox_confs
,
box
,
box_var
=
fluid
.
layers
.
multi_box_head
(
inputs
=
[
...
...
@@ -264,23 +272,30 @@ class PyramidBox(object):
self
.
conv7
,
self
.
conv8
],
image
=
self
.
image
,
num_classes
=
num_classes
,
# min_ratio=20,
# max_ratio=90,
num_classes
=
self
.
num_classes
,
min_sizes
=
[
16.0
,
32.0
,
64.0
,
128.0
,
256.0
,
512.0
],
max_sizes
=
[[],
[],
[],
[],
[],
[]],
# max_sizes=[[], 150.0, 195.0, 240.0, 285.0, 300.0],
aspect_ratios
=
[[
1.
],
[
1.
],
[
1.
],
[
1.
],
[
1.
],
[
1.
]],
steps
=
[
4.0
,
8.0
,
16.0
,
32.0
,
64.0
,
128.0
],
base_size
=
image
_shape
[
2
],
base_size
=
self
.
data
_shape
[
2
],
offset
=
0.5
,
flip
=
False
)
# locs, confs, box, box_var = vgg_extra_net(num_classes, image, image_shape)
# nmsed_out = fluid.layers.detection_output(
# locs, confs, box, box_var, nms_threshold=args.nms_threshold)
loss
=
fluid
.
layers
.
ssd_loss
(
mbox_locs
,
mbox_confs
,
self
.
face_box
,
self
.
gt_label
,
box
,
box_var
)
self
.
face_mbox_loc
=
mbox_locs
self
.
face_mbox_conf
=
mbox_confs
self
.
prior_boxes
=
box
self
.
box_vars
=
box_var
def
vgg_ssd_loss
(
self
):
loss
=
fluid
.
layers
.
ssd_loss
(
self
.
face_mbox_loc
,
self
.
face_mbox_conf
,
self
.
face_box
,
self
.
gt_label
,
self
.
prior_boxes
,
self
.
box_vars
,
overlap_threshold
=
0.35
,
neg_overlap
=
0.35
)
loss
=
fluid
.
layers
.
reduce_sum
(
loss
)
return
loss
...
...
@@ -297,7 +312,7 @@ class PyramidBox(object):
total_loss
=
face_loss
+
head_loss
return
face_loss
,
head_loss
,
total_loss
def
test
(
self
):
def
infer
(
self
):
test_program
=
fluid
.
default_main_program
().
clone
(
for_test
=
True
)
with
fluid
.
program_guard
(
test_program
):
face_nmsed_out
=
fluid
.
layers
.
detection_output
(
...
...
@@ -306,24 +321,4 @@ class PyramidBox(object):
self
.
prior_boxes
,
self
.
box_vars
,
nms_threshold
=
0.45
)
head_nmsed_out
=
fluid
.
layers
.
detection_output
(
self
.
head_mbox_loc
,
self
.
head_mbox_conf
,
self
.
prior_boxes
,
self
.
box_vars
,
nms_threshold
=
0.45
)
face_map_eval
=
fluid
.
evaluator
.
DetectionMAP
(
face_nmsed_out
,
self
.
gt_label
,
self
.
face_box
,
class_num
=
2
,
overlap_threshold
=
0.5
,
ap_version
=
'11point'
)
head_map_eval
=
fluid
.
evaluator
.
DetectionMAP
(
head_nmsed_out
,
self
.
gt_label
,
self
.
head_box
,
class_num
=
2
,
overlap_threshold
=
0.5
,
ap_version
=
'11point'
)
return
test_program
,
face_map_eval
,
head_map_eval
return
test_program
,
face_nmsed_out
fluid/face_detection/reader.py
浏览文件 @
5abba732
...
...
@@ -272,3 +272,29 @@ def pyramidbox(settings, file_list, mode, shuffle):
def
train
(
settings
,
file_list
,
shuffle
=
True
):
return
pyramidbox
(
settings
,
file_list
,
'train'
,
shuffle
)
def
infer
(
settings
,
image_path
):
def
batch_reader
():
img
=
Image
.
open
(
image_path
)
if
img
.
mode
==
'L'
:
img
=
im
.
convert
(
'RGB'
)
im_width
,
im_height
=
img
.
size
if
settings
.
resize_w
and
settings
.
resize_h
:
img
=
img
.
resize
((
settings
.
resize_w
,
settings
.
resize_h
),
Image
.
ANTIALIAS
)
img
=
np
.
array
(
img
)
# HWC to CHW
if
len
(
img
.
shape
)
==
3
:
img
=
np
.
swapaxes
(
img
,
1
,
2
)
img
=
np
.
swapaxes
(
img
,
1
,
0
)
# RBG to BGR
img
=
img
[[
2
,
1
,
0
],
:,
:]
img
=
img
.
astype
(
'float32'
)
img
-=
settings
.
img_mean
img
=
img
*
0.007843
img
=
[
img
]
img
=
np
.
array
(
img
)
return
img
return
batch_reader
fluid/face_detection/train.py
浏览文件 @
5abba732
...
...
@@ -40,13 +40,13 @@ def train(args, data_args, learning_rate, batch_size, pretrained_model,
image_shape
=
[
3
,
data_args
.
resize_h
,
data_args
.
resize_w
]
fetches
=
[]
network
=
PyramidBox
(
image_shape
,
num_classes
,
sub_network
=
args
.
use_pyramidbox
)
if
args
.
use_pyramidbox
:
network
=
PyramidBox
(
image_shape
,
sub_network
=
args
.
use_pyramidbox
)
face_loss
,
head_loss
,
loss
=
network
.
train
()
fetches
=
[
face_loss
,
head_loss
]
else
:
network
=
PyramidBox
(
image_shape
,
sub_network
=
args
.
use_pyramidbox
)
loss
=
network
.
vgg_ssd
(
num_classes
,
image_shape
)
loss
=
network
.
vgg_ssd_loss
()
fetches
=
[
loss
]
epocs
=
12880
/
batch_size
...
...
@@ -126,7 +126,7 @@ def train(args, data_args, learning_rate, batch_size, pretrained_model,
batch_id
,
fetch_vars
[
0
],
fetch_vars
[
1
],
start_time
-
prev_start_time
))
if
pass_id
%
1
0
==
0
or
pass_id
==
num_passes
-
1
:
if
pass_id
%
1
==
0
or
pass_id
==
num_passes
-
1
:
save_model
(
str
(
pass_id
))
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录