pyramidbox.py 15.5 KB
Newer Older
1 2 3 4 5 6
import numpy as np

import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.initializer import Xavier
from paddle.fluid.initializer import Constant
7
from paddle.fluid.initializer import Bilinear
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
from paddle.fluid.regularizer import L2Decay


def conv_bn(input, filter, ksize, stride, padding, act='relu', bias_attr=False):
    conv = fluid.layers.conv2d(
        input=input,
        filter_size=ksize,
        num_filters=filter,
        stride=stride,
        padding=padding,
        act=None,
        bias_attr=bias_attr)
    return fluid.layers.batch_norm(input=conv, act=act)


def conv_block(input, groups, filters, ksizes, strides=None, with_pool=True):
    assert len(filters) == groups
    assert len(ksizes) == groups
    strides = [1] * groups if strides is None else strides
    w_attr = ParamAttr(learning_rate=1., initializer=Xavier())
    b_attr = ParamAttr(learning_rate=2., regularizer=L2Decay(0.))
    conv = input
    for i in xrange(groups):
        conv = fluid.layers.conv2d(
            input=conv,
            num_filters=filters[i],
            filter_size=ksizes[i],
            stride=strides[i],
            padding=(ksizes[i] - 1) / 2,
            param_attr=w_attr,
            bias_attr=b_attr,
            act='relu')
    if with_pool:
        pool = fluid.layers.pool2d(
B
baiyfbupt 已提交
42 43 44 45 46
            input=conv,
            pool_size=2,
            pool_type='max',
            pool_stride=2,
            ceil_mode=True)
Q
qingqing01 已提交
47
        return conv, pool
48 49 50 51 52
    else:
        return conv


class PyramidBox(object):
Q
qingqing01 已提交
53 54 55
    def __init__(self,
                 data_shape,
                 num_classes,
56
                 use_transposed_conv2d=True,
Q
qingqing01 已提交
57 58
                 is_infer=False,
                 sub_network=False):
59 60 61
        """
        TODO(qingqing): add comments.
        """
62 63 64
        self.data_shape = data_shape
        self.min_sizes = [16., 32., 64., 128., 256., 512.]
        self.steps = [4., 8., 16., 32., 64., 128.]
65 66
        self.num_classes = num_classes
        self.use_transposed_conv2d = use_transposed_conv2d
67
        self.is_infer = is_infer
68
        self.sub_network = sub_network
69

70
        # the base network is VGG with atrous layers
71 72
        self._input()
        self._vgg()
73 74 75 76
        if sub_network:
            self._low_level_fpn()
            self._cpm_module()
            self._pyramidbox()
Q
qingqing01 已提交
77 78
        else:
            self._vgg_ssd()
79

80 81 82 83 84 85 86 87 88
    def feeds(self):
        if self.is_infer:
            return [self.image]
        else:
            return [
                self.image, self.face_box, self.head_box, self.gt_label,
                self.difficult
            ]

89 90 91 92
    def _input(self):
        self.image = fluid.layers.data(
            name='image', shape=self.data_shape, dtype='float32')
        if not self.is_infer:
93 94 95 96
            self.face_box = fluid.layers.data(
                name='face_box', shape=[4], dtype='float32', lod_level=1)
            self.head_box = fluid.layers.data(
                name='head_box', shape=[4], dtype='float32', lod_level=1)
97 98
            self.gt_label = fluid.layers.data(
                name='gt_label', shape=[1], dtype='int32', lod_level=1)
99 100
            self.difficult = fluid.layers.data(
                name='gt_difficult', shape=[1], dtype='int32', lod_level=1)
101 102

    def _vgg(self):
Q
qingqing01 已提交
103 104
        self.conv1, self.pool1 = conv_block(self.image, 2, [64] * 2, [3] * 2)
        self.conv2, self.pool2 = conv_block(self.pool1, 2, [128] * 2, [3] * 2)
105 106

        #priorbox min_size is 16
Q
qingqing01 已提交
107
        self.conv3, self.pool3 = conv_block(self.pool2, 3, [256] * 3, [3] * 3)
108
        #priorbox min_size is 32
Q
qingqing01 已提交
109
        self.conv4, self.pool4 = conv_block(self.pool3, 3, [512] * 3, [3] * 3)
110
        #priorbox min_size is 64
Q
qingqing01 已提交
111
        self.conv5, self.pool5 = conv_block(self.pool4, 3, [512] * 3, [3] * 3)
112 113

        # fc6 and fc7 in paper, priorbox min_size is 128
Q
qingqing01 已提交
114 115
        self.conv6 = conv_block(
            self.pool5, 2, [1024, 1024], [3, 1], with_pool=False)
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
        # conv6_1 and conv6_2 in paper, priorbox min_size is 256
        self.conv7 = conv_block(
            self.conv6, 2, [256, 512], [1, 3], [1, 2], with_pool=False)
        # conv7_1 and conv7_2 in paper, priorbox mini_size is 512
        self.conv8 = conv_block(
            self.conv7, 2, [128, 256], [1, 3], [1, 2], with_pool=False)

    def _low_level_fpn(self):
        """
        Low-level feature pyramid network.
        """

        def fpn(up_from, up_to):
            ch = up_to.shape[1]
            b_attr = ParamAttr(learning_rate=2., regularizer=L2Decay(0.))
            conv1 = fluid.layers.conv2d(
                up_from, ch, 1, act='relu', bias_attr=b_attr)
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
            if self.use_transposed_conv2d:
                w_attr = ParamAttr(
                    learning_rate=0.,
                    regularizer=L2Decay(0.),
                    initializer=Bilinear())
                upsampling = fluid.layers.conv2d_transpose(
                    conv1,
                    ch,
                    output_size=None,
                    filter_size=4,
                    padding=1,
                    stride=2,
                    groups=ch,
                    param_attr=w_attr,
                    bias_attr=False)
            else:
                upsampling = fluid.layers.resize_bilinear(
                    conv1, out_shape=up_to.shape[2:])

152 153 154
            b_attr = ParamAttr(learning_rate=2., regularizer=L2Decay(0.))
            conv2 = fluid.layers.conv2d(
                up_to, ch, 1, act='relu', bias_attr=b_attr)
B
baiyfbupt 已提交
155 156
            if self.is_infer:
                upsampling = fluid.layers.crop(upsampling, shape=conv2)
157
            # eltwise mul
158
            conv_fuse = upsampling * conv2
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
            return conv_fuse

        self.lfpn2_on_conv5 = fpn(self.conv6, self.conv5)
        self.lfpn1_on_conv4 = fpn(self.lfpn2_on_conv5, self.conv4)
        self.lfpn0_on_conv3 = fpn(self.lfpn1_on_conv4, self.conv3)

    def _cpm_module(self):
        """
        Context-sensitive Prediction Module 
        """

        def cpm(input):
            # residual
            branch1 = conv_bn(input, 1024, 1, 1, 0, None)
            branch2a = conv_bn(input, 256, 1, 1, 0, act='relu')
            branch2b = conv_bn(branch2a, 256, 3, 1, 1, act='relu')
            branch2c = conv_bn(branch2b, 1024, 1, 1, 0, None)
            sum = branch1 + branch2c
            rescomb = fluid.layers.relu(x=sum)

            # ssh
            b_attr = ParamAttr(learning_rate=2., regularizer=L2Decay(0.))
            ssh_1 = fluid.layers.conv2d(rescomb, 256, 3, 1, 1, bias_attr=b_attr)
            ssh_dimred = fluid.layers.conv2d(
                rescomb, 128, 3, 1, 1, act='relu', bias_attr=b_attr)
            ssh_2 = fluid.layers.conv2d(
                ssh_dimred, 128, 3, 1, 1, bias_attr=b_attr)
            ssh_3a = fluid.layers.conv2d(
                ssh_dimred, 128, 3, 1, 1, act='relu', bias_attr=b_attr)
            ssh_3b = fluid.layers.conv2d(ssh_3a, 128, 3, 1, 1, bias_attr=b_attr)

            ssh_concat = fluid.layers.concat([ssh_1, ssh_2, ssh_3b], axis=1)
            ssh_out = fluid.layers.relu(x=ssh_concat)
            return ssh_out

        self.ssh_conv3 = cpm(self.lfpn0_on_conv3)
        self.ssh_conv4 = cpm(self.lfpn1_on_conv4)
        self.ssh_conv5 = cpm(self.lfpn2_on_conv5)
        self.ssh_conv6 = cpm(self.conv6)
        self.ssh_conv7 = cpm(self.conv7)
        self.ssh_conv8 = cpm(self.conv8)

    def _l2_norm_scale(self, input, init_scale=1.0, channel_shared=False):
        from paddle.fluid.layer_helper import LayerHelper
        helper = LayerHelper("Scale")
        l2_norm = fluid.layers.l2_normalize(
            input, axis=1)  # l2 norm along channel
        shape = [1] if channel_shared else [input.shape[1]]
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=shape,
            dtype=input.dtype,
            default_initializer=Constant(init_scale))
        out = fluid.layers.elementwise_mul(
            x=l2_norm, y=scale, axis=-1 if channel_shared else 1)
        return out

    def _pyramidbox(self):
        """
        Get prior-boxes and pyramid-box
        """
Q
qingqing01 已提交
220 221 222 223
        self.ssh_conv3_norm = self._l2_norm_scale(
            self.ssh_conv3, init_scale=10.)
        self.ssh_conv4_norm = self._l2_norm_scale(self.ssh_conv4, init_scale=8.)
        self.ssh_conv5_norm = self._l2_norm_scale(self.ssh_conv5, init_scale=5.)
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266

        def permute_and_reshape(input, last_dim):
            trans = fluid.layers.transpose(input, perm=[0, 2, 3, 1])
            new_shape = [
                trans.shape[0], np.prod(trans.shape[1:]) / last_dim, last_dim
            ]
            return fluid.layers.reshape(trans, shape=new_shape)

        face_locs, face_confs = [], []
        head_locs, head_confs = [], []
        boxes, vars = [], []
        inputs = [
            self.ssh_conv3_norm, self.ssh_conv4_norm, self.ssh_conv5_norm,
            self.ssh_conv6, self.ssh_conv7, self.ssh_conv8
        ]
        b_attr = ParamAttr(learning_rate=2., regularizer=L2Decay(0.))
        for i, input in enumerate(inputs):
            mbox_loc = fluid.layers.conv2d(input, 8, 3, 1, 1, bias_attr=b_attr)
            face_loc, head_loc = fluid.layers.split(
                mbox_loc, num_or_sections=2, dim=1)
            face_loc = permute_and_reshape(face_loc, 4)
            head_loc = permute_and_reshape(head_loc, 4)

            mbox_conf = fluid.layers.conv2d(input, 6, 3, 1, 1, bias_attr=b_attr)
            face_conf1, face_conf3, head_conf = fluid.layers.split(
                mbox_conf, num_or_sections=[1, 3, 2], dim=1)
            face_conf3_maxin = fluid.layers.reduce_max(
                face_conf3, dim=1, keep_dim=True)
            face_conf = fluid.layers.concat(
                [face_conf1, face_conf3_maxin], axis=1)

            face_conf = permute_and_reshape(face_conf, 2)
            head_conf = permute_and_reshape(head_conf, 2)

            face_locs.append(face_loc)
            face_confs.append(face_conf)

            head_locs.append(head_loc)
            head_confs.append(head_conf)

            box, var = fluid.layers.prior_box(
                input,
                self.image,
Q
qingqing01 已提交
267
                min_sizes=[self.min_sizes[i]],
268 269
                steps=[self.steps[i]] * 2,
                aspect_ratios=[1.],
270 271
                clip=False,
                flip=True,
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
                offset=0.5)
            box = fluid.layers.reshape(box, shape=[-1, 4])
            var = fluid.layers.reshape(var, shape=[-1, 4])

            boxes.append(box)
            vars.append(var)

        self.face_mbox_loc = fluid.layers.concat(face_locs, axis=1)
        self.face_mbox_conf = fluid.layers.concat(face_confs, axis=1)

        self.head_mbox_loc = fluid.layers.concat(head_locs, axis=1)
        self.head_mbox_conf = fluid.layers.concat(head_confs, axis=1)

        self.prior_boxes = fluid.layers.concat(boxes)
        self.box_vars = fluid.layers.concat(vars)

Q
qingqing01 已提交
288 289 290 291
    def _vgg_ssd(self):
        self.conv3_norm = self._l2_norm_scale(self.conv3, init_scale=10.)
        self.conv4_norm = self._l2_norm_scale(self.conv4, init_scale=8.)
        self.conv5_norm = self._l2_norm_scale(self.conv5, init_scale=5.)
292

Q
qingqing01 已提交
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
        def permute_and_reshape(input, last_dim):
            trans = fluid.layers.transpose(input, perm=[0, 2, 3, 1])
            new_shape = [
                trans.shape[0], np.prod(trans.shape[1:]) / last_dim, last_dim
            ]
            return fluid.layers.reshape(trans, shape=new_shape)

        locs, confs = [], []
        boxes, vars = [], []
        b_attr = ParamAttr(learning_rate=2., regularizer=L2Decay(0.))

        # conv3
        mbox_loc = fluid.layers.conv2d(
            self.conv3_norm, 4, 3, 1, 1, bias_attr=b_attr)
        loc = permute_and_reshape(mbox_loc, 4)
        mbox_conf = fluid.layers.conv2d(
            self.conv3_norm, 4, 3, 1, 1, bias_attr=b_attr)
        conf1, conf3 = fluid.layers.split(
            mbox_conf, num_or_sections=[1, 3], dim=1)
        conf3_maxin = fluid.layers.reduce_max(conf3, dim=1, keep_dim=True)
        conf = fluid.layers.concat([conf1, conf3_maxin], axis=1)
        conf = permute_and_reshape(conf, 2)
        box, var = fluid.layers.prior_box(
            self.conv3_norm,
            self.image,
            min_sizes=[16.],
            steps=[4, 4],
            aspect_ratios=[1.],
            clip=False,
            flip=True,
            offset=0.5)
        box = fluid.layers.reshape(box, shape=[-1, 4])
        var = fluid.layers.reshape(var, shape=[-1, 4])

        locs.append(loc)
        confs.append(conf)
        boxes.append(box)
        vars.append(var)

        min_sizes = [32., 64., 128., 256., 512.]
        steps = [8., 16., 32., 64., 128.]
        inputs = [
            self.conv4_norm, self.conv5_norm, self.conv6, self.conv7, self.conv8
        ]
        for i, input in enumerate(inputs):
            mbox_loc = fluid.layers.conv2d(input, 4, 3, 1, 1, bias_attr=b_attr)
            loc = permute_and_reshape(mbox_loc, 4)

            mbox_conf = fluid.layers.conv2d(input, 2, 3, 1, 1, bias_attr=b_attr)
            conf = permute_and_reshape(mbox_conf, 2)
            box, var = fluid.layers.prior_box(
                input,
                self.image,
                min_sizes=[min_sizes[i]],
                steps=[steps[i]] * 2,
                aspect_ratios=[1.],
349 350
                clip=False,
                flip=True,
Q
qingqing01 已提交
351 352 353 354 355 356 357 358 359 360 361 362 363
                offset=0.5)
            box = fluid.layers.reshape(box, shape=[-1, 4])
            var = fluid.layers.reshape(var, shape=[-1, 4])

            locs.append(loc)
            confs.append(conf)
            boxes.append(box)
            vars.append(var)

        self.face_mbox_loc = fluid.layers.concat(locs, axis=1)
        self.face_mbox_conf = fluid.layers.concat(confs, axis=1)
        self.prior_boxes = fluid.layers.concat(boxes)
        self.box_vars = fluid.layers.concat(vars)
Q
qingqing01 已提交
364 365 366 367 368 369 370 371 372 373 374

    def vgg_ssd_loss(self):
        loss = fluid.layers.ssd_loss(
            self.face_mbox_loc,
            self.face_mbox_conf,
            self.face_box,
            self.gt_label,
            self.prior_boxes,
            self.box_vars,
            overlap_threshold=0.35,
            neg_overlap=0.35)
375 376 377
        loss = fluid.layers.reduce_sum(loss)
        return loss

378 379
    def train(self):
        face_loss = fluid.layers.ssd_loss(
Q
qingqing01 已提交
380 381 382 383 384 385 386 387
            self.face_mbox_loc,
            self.face_mbox_conf,
            self.face_box,
            self.gt_label,
            self.prior_boxes,
            self.box_vars,
            overlap_threshold=0.35,
            neg_overlap=0.35)
388
        face_loss.persistable = True
389
        head_loss = fluid.layers.ssd_loss(
Q
qingqing01 已提交
390 391 392 393 394 395 396 397
            self.head_mbox_loc,
            self.head_mbox_conf,
            self.head_box,
            self.gt_label,
            self.prior_boxes,
            self.box_vars,
            overlap_threshold=0.35,
            neg_overlap=0.35)
398
        head_loss.persistable = True
399
        face_loss = fluid.layers.reduce_sum(face_loss)
400
        face_loss.persistable = True
401
        head_loss = fluid.layers.reduce_sum(head_loss)
402
        head_loss.persistable = True
403
        total_loss = face_loss + head_loss
404
        total_loss.persistable = True
405
        return face_loss, head_loss, total_loss
406

B
baiyfbupt 已提交
407 408 409 410 411
    def infer(self, main_program=None):
        if main_program is None:
            test_program = fluid.default_main_program().clone(for_test=True)
        else:
            test_program = main_program.clone(for_test=True)
412 413 414 415 416 417
        with fluid.program_guard(test_program):
            face_nmsed_out = fluid.layers.detection_output(
                self.face_mbox_loc,
                self.face_mbox_conf,
                self.prior_boxes,
                self.box_vars,
418 419 420 421
                nms_threshold=0.3,
                nms_top_k=5000,
                keep_top_k=750,
                score_threshold=0.05)
Q
qingqing01 已提交
422
        return test_program, face_nmsed_out