train.py 6.3 KB
Newer Older
X
xiaoting 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
"""Trainer for ICNet model."""
15 16 17
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
18 19 20 21 22
from icnet import icnet
import cityscape
import argparse
import functools
import sys
W
wanghaoshuang 已提交
23
import os
24 25 26
import time
import paddle.fluid as fluid
import numpy as np
27
from utils import add_arguments, print_arguments, get_feeder_data, check_gpu
28 29 30
from paddle.fluid.layers.learning_rate_scheduler import _decay_step_counter
from paddle.fluid.initializer import init_on_cpu

W
wanghaoshuang 已提交
31 32
if 'ce_mode' in os.environ:
    np.random.seed(10)
W
whs 已提交
33
    fluid.default_startup_program().random_seed = 90
W
wanghaoshuang 已提交
34

35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
# yapf: disable
add_arg('batch_size',        int,   16,         "Minibatch size.")
add_arg('checkpoint_path',   str,   None,       "Checkpoint svae path.")
add_arg('init_model',        str,   None,       "Pretrain model path.")
add_arg('use_gpu',           bool,  True,       "Whether use GPU to train.")
add_arg('random_mirror',     bool,  True,       "Whether prepare by random mirror.")
add_arg('random_scaling',    bool,  True,       "Whether prepare by random scaling.")
# yapf: enable

LAMBDA1 = 0.16
LAMBDA2 = 0.4
LAMBDA3 = 1.0
LEARNING_RATE = 0.003
POWER = 0.9
W
whs 已提交
51 52 53 54 55
LOG_PERIOD = 1
CHECKPOINT_PERIOD = 1000
TOTAL_STEP = 60000
if 'ce_mode' in os.environ:
    TOTAL_STEP = 100
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108

no_grad_set = []


def create_loss(predict, label, mask, num_classes):
    predict = fluid.layers.transpose(predict, perm=[0, 2, 3, 1])
    predict = fluid.layers.reshape(predict, shape=[-1, num_classes])
    label = fluid.layers.reshape(label, shape=[-1, 1])
    predict = fluid.layers.gather(predict, mask)
    label = fluid.layers.gather(label, mask)
    label = fluid.layers.cast(label, dtype="int64")
    loss = fluid.layers.softmax_with_cross_entropy(predict, label)
    no_grad_set.append(label.name)
    return fluid.layers.reduce_mean(loss)


def poly_decay():
    global_step = _decay_step_counter()
    with init_on_cpu():
        decayed_lr = LEARNING_RATE * (fluid.layers.pow(
            (1 - global_step / TOTAL_STEP), POWER))
    return decayed_lr


def train(args):
    data_shape = cityscape.train_data_shape()
    num_classes = cityscape.num_classes()
    # define network
    images = fluid.layers.data(name='image', shape=data_shape, dtype='float32')
    label_sub1 = fluid.layers.data(name='label_sub1', shape=[1], dtype='int32')
    label_sub2 = fluid.layers.data(name='label_sub2', shape=[1], dtype='int32')
    label_sub4 = fluid.layers.data(name='label_sub4', shape=[1], dtype='int32')
    mask_sub1 = fluid.layers.data(name='mask_sub1', shape=[-1], dtype='int32')
    mask_sub2 = fluid.layers.data(name='mask_sub2', shape=[-1], dtype='int32')
    mask_sub4 = fluid.layers.data(name='mask_sub4', shape=[-1], dtype='int32')

    sub4_out, sub24_out, sub124_out = icnet(
        images, num_classes, np.array(data_shape[1:]).astype("float32"))
    loss_sub4 = create_loss(sub4_out, label_sub4, mask_sub4, num_classes)
    loss_sub24 = create_loss(sub24_out, label_sub2, mask_sub2, num_classes)
    loss_sub124 = create_loss(sub124_out, label_sub1, mask_sub1, num_classes)
    reduced_loss = LAMBDA1 * loss_sub4 + LAMBDA2 * loss_sub24 + LAMBDA3 * loss_sub124

    regularizer = fluid.regularizer.L2Decay(0.0001)
    optimizer = fluid.optimizer.Momentum(
        learning_rate=poly_decay(), momentum=0.9, regularization=regularizer)
    _, params_grads = optimizer.minimize(reduced_loss, no_grad_set=no_grad_set)

    # prepare environment
    place = fluid.CPUPlace()
    if args.use_gpu:
        place = fluid.CUDAPlace(0)
    exe = fluid.Executor(place)
W
wanghaoshuang 已提交
109

110 111 112
    exe.run(fluid.default_startup_program())

    if args.init_model is not None:
113
        print("load model from: %s" % args.init_model)
W
whs 已提交
114 115 116 117 118

        def if_exist(var):
            return os.path.exists(os.path.join(args.init_model, var.name))

        fluid.io.load_vars(exe, args.init_model, predicate=if_exist)
119 120 121 122 123 124 125 126

    iter_id = 0
    t_loss = 0.
    sub4_loss = 0.
    sub24_loss = 0.
    sub124_loss = 0.
    train_reader = cityscape.train(
        args.batch_size, flip=args.random_mirror, scaling=args.random_scaling)
W
wanghaoshuang 已提交
127
    start_time = time.time()
128 129 130 131
    while True:
        # train a pass
        for data in train_reader():
            if iter_id > TOTAL_STEP:
W
wanghaoshuang 已提交
132
                end_time = time.time()
133
                print("kpis	train_duration	%f" % (end_time - start_time))
134 135 136 137 138 139 140 141 142 143 144
                return
            iter_id += 1
            results = exe.run(
                feed=get_feeder_data(data, place),
                fetch_list=[reduced_loss, loss_sub4, loss_sub24, loss_sub124])
            t_loss += results[0]
            sub4_loss += results[1]
            sub24_loss += results[2]
            sub124_loss += results[3]
            # training log
            if iter_id % LOG_PERIOD == 0:
W
whs 已提交
145 146 147 148
                print(
                    "Iter[%d]; train loss: %.3f; sub4_loss: %.3f; sub24_loss: %.3f; sub124_loss: %.3f"
                    % (iter_id, t_loss / LOG_PERIOD, sub4_loss / LOG_PERIOD,
                       sub24_loss / LOG_PERIOD, sub124_loss / LOG_PERIOD))
149
                print("kpis	train_cost	%f" % (t_loss / LOG_PERIOD))
W
wanghaoshuang 已提交
150

151 152 153 154 155 156
                t_loss = 0.
                sub4_loss = 0.
                sub24_loss = 0.
                sub124_loss = 0.
                sys.stdout.flush()

W
wanghaoshuang 已提交
157
            if iter_id % CHECKPOINT_PERIOD == 0 and args.checkpoint_path is not None:
158 159
                dir_name = args.checkpoint_path + "/" + str(iter_id)
                fluid.io.save_persistables(exe, dirname=dir_name)
160
                print("Saved checkpoint: %s" % (dir_name))
161 162 163 164 165


def main():
    args = parser.parse_args()
    print_arguments(args)
166
    check_gpu(args.use_gpu)
167 168 169 170 171
    train(args)


if __name__ == "__main__":
    main()