train.py 17.4 KB
Newer Older
P
phlrain 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import time
import os
import random
import math
24
import contextlib
25
from distutils.dir_util import mkpath
P
phlrain 已提交
26 27
import paddle
import paddle.fluid as fluid
28
from paddle.fluid import profiler
P
phlrain 已提交
29
import paddle.fluid.framework as framework
30
import paddle.fluid.profiler as profiler
P
phlrain 已提交
31 32 33 34 35 36 37 38
from paddle.fluid.executor import Executor

import reader

import sys
if sys.version[0] == '2':
    reload(sys)
    sys.setdefaultencoding("utf-8")
39
sys.path.append('../')
P
phlrain 已提交
40 41 42 43
import os
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"

from args import *
44
from models.model_check import check_cuda, check_version
Y
Yibing Liu 已提交
45
from models.language_model import lm_model
46
from config import RNNConfig
P
phlrain 已提交
47 48 49 50 51 52
import logging
import pickle

SEED = 123


53
@contextlib.contextmanager
54
def profile_context(profile=True, profiler_path='/tmp/paddingrnn.profile'):
55
    if profile:
56
        with profiler.profiler('All', 'total', profiler_path):
57 58 59 60 61
            yield
    else:
        yield


P
phlrain 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
def get_current_model_para(train_prog, train_exe):
    param_list = train_prog.block(0).all_parameters()
    param_name_list = [p.name for p in param_list]

    vals = {}
    for p_name in param_name_list:
        p_array = np.array(fluid.global_scope().find_var(p_name).get_tensor())
        vals[p_name] = p_array

    return vals


def save_para_npz(train_prog, train_exe):
    print("begin to save model to model_base")
    param_list = train_prog.block(0).all_parameters()
    param_name_list = [p.name for p in param_list]

    vals = {}
    for p_name in param_name_list:
        p_array = np.array(fluid.global_scope().find_var(p_name).get_tensor())
        vals[p_name] = p_array

    emb = vals["embedding_para"]
    print("begin to save model to model_base")
    np.savez("mode_base", **vals)


89
def main():
P
phlrain 已提交
90
    args = parse_args()
91

92
    # check if set use_gpu=True in paddlepaddle cpu version
93
    check_cuda(args.use_gpu)
94 95
    # check if paddlepaddle version is satisfied
    check_version()
96

P
phlrain 已提交
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
    logger = logging.getLogger("lm")
    logger.setLevel(logging.INFO)
    formatter = logging.Formatter(
        '%(asctime)s - %(name)s - %(levelname)s - %(message)s')
    if args.log_path:
        file_handler = logging.FileHandler(args.log_path)
        file_handler.setLevel(logging.INFO)
        file_handler.setFormatter(formatter)
        logger.addHandler(file_handler)
    else:
        console_handler = logging.StreamHandler()
        console_handler.setLevel(logging.INFO)
        console_handler.setFormatter(formatter)
        logger.addHandler(console_handler)
    logger.info('Running with args : {}'.format(args))

113 114
    config = RNNConfig(args)

115 116 117
    if not os.path.exists(args.save_model_dir):
        mkpath(args.save_model_dir)

118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
    # define train program
    main_program = fluid.Program()
    startup_program = fluid.Program()
    if args.enable_ce:
        startup_program.random_seed = SEED
    with fluid.program_guard(main_program, startup_program):
        with fluid.unique_name.guard():
            res_vars = lm_model.lm_model(
                config.hidden_size,
                config.vocab_size,
                config.batch_size,
                num_layers=config.num_layers,
                num_steps=config.num_steps,
                init_scale=config.init_scale,
                dropout=config.dropout,
                rnn_model=config.rnn_model,
134
                use_dataloader=args.use_dataloader)
135

136 137
            if args.use_dataloader:
                dataloader = res_vars[-1]
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
                res_vars = res_vars[:-1]
            loss, last_hidden, last_cell, feed_order = res_vars

            fluid.clip.set_gradient_clip(
                clip=fluid.clip.GradientClipByGlobalNorm(
                    clip_norm=config.max_grad_norm))

            learning_rate = fluid.layers.create_global_var(
                name="learning_rate",
                shape=[1],
                value=1.0,
                dtype='float32',
                persistable=True)

            optimizer = fluid.optimizer.SGD(learning_rate=learning_rate)
            optimizer.minimize(loss)

    # define inference program
    inference_program = fluid.Program()
    inference_startup_program = fluid.Program()
    with fluid.program_guard(inference_program, inference_startup_program):
        with fluid.unique_name.guard():
            lm_model.lm_model(
                config.hidden_size,
                config.vocab_size,
                config.batch_size,
                num_layers=config.num_layers,
                num_steps=config.num_steps,
                init_scale=config.init_scale,
                dropout=config.dropout,
                rnn_model=config.rnn_model,
169
                use_dataloader=False)
170 171 172
    # Some op behaves differently for train and inference, we need to call
    # this clone function to ensure every op is right for inference.
    inference_program = inference_program.clone(for_test=True)
P
phlrain 已提交
173

Y
Yibing Liu 已提交
174
    place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace()
P
phlrain 已提交
175
    exe = Executor(place)
176 177
    exe.run(startup_program)

178 179 180 181 182 183 184 185 186
    if args.init_from_pretrain_model:
        if not os.path.exists(args.init_from_pretrain_model + '.pdparams'):
            print(args.init_from_pretrain_model)
            raise Warning("The pretrained params do not exist.")
            return
        fluid.load(main_program, args.init_from_pretrain_model)
        print("finish initing model from pretrained params from %s" %
              (args.init_from_pretrain_model))

187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
    device_count = len(fluid.cuda_places()) if args.use_gpu else len(
        fluid.cpu_places())

    exec_strategy = fluid.ExecutionStrategy()
    exec_strategy.num_threads = device_count
    exec_strategy.num_iteration_per_drop_scope = 100

    build_strategy = fluid.BuildStrategy()
    build_strategy.fuse_all_optimizer_ops = True

    if args.parallel:
        train_program = fluid.compiler.CompiledProgram(
            main_program).with_data_parallel(
                loss_name=loss.name,
                build_strategy=build_strategy,
                exec_strategy=exec_strategy)
    else:
        train_program = fluid.compiler.CompiledProgram(main_program)
P
phlrain 已提交
205 206 207

    data_path = args.data_path
    print("begin to load data")
H
Hongyu Liu 已提交
208
    ptb_data = reader.get_ptb_data(data_path)
P
phlrain 已提交
209
    print("finished load data")
H
Hongyu Liu 已提交
210
    train_data, valid_data, test_data = ptb_data
P
phlrain 已提交
211

212
    def generate_init_data():
213
        batch_size = config.batch_size * device_count
214
        init_hidden = np.zeros(
215
            (batch_size, config.num_layers, config.hidden_size),
216 217
            dtype='float32')
        init_cell = np.zeros(
218
            (batch_size, config.num_layers, config.hidden_size),
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
            dtype='float32')
        return init_hidden, init_cell

    def generate_new_lr(epoch_id=0, device_count=1):
        new_lr = config.base_learning_rate * (config.lr_decay**max(
            epoch_id + 1 - config.epoch_start_decay, 0.0))
        lr = np.ones((device_count), dtype='float32') * new_lr
        return lr

    def prepare_input(batch,
                      init_hidden=None,
                      init_cell=None,
                      epoch_id=0,
                      with_lr=True,
                      device_count=1):
P
phlrain 已提交
234
        x, y = batch
235
        x = x.reshape((-1, config.num_steps, 1))
P
phlrain 已提交
236 237
        y = y.reshape((-1, 1))

238
        res = {}
P
phlrain 已提交
239 240
        res['x'] = x
        res['y'] = y
241 242 243 244
        if init_hidden is not None:
            res['init_hidden'] = init_hidden
        if init_cell is not None:
            res['init_cell'] = init_cell
P
phlrain 已提交
245
        if with_lr:
246
            res['learning_rate'] = generate_new_lr(epoch_id, device_count)
P
phlrain 已提交
247 248 249 250 251

        return res

    def eval(data):
        # when eval the batch_size set to 1
252 253
        eval_data_iter = reader.get_data_iter(data, config.batch_size *
                                              device_count, config.num_steps)
P
phlrain 已提交
254 255
        total_loss = 0.0
        iters = 0
256
        init_hidden, init_cell = generate_init_data()
P
phlrain 已提交
257 258
        for batch_id, batch in enumerate(eval_data_iter):
            input_data_feed = prepare_input(
259
                batch, init_hidden, init_cell, epoch_id=0, with_lr=False)
P
phlrain 已提交
260
            fetch_outs = exe.run(
261
                program=inference_program,
P
phlrain 已提交
262
                feed=input_data_feed,
L
liuhongyu 已提交
263
                fetch_list=[loss.name, last_hidden.name, last_cell.name],
H
Hongyu Liu 已提交
264
                use_program_cache=False)
P
phlrain 已提交
265

266
            cost_eval = np.array(fetch_outs[0])
P
phlrain 已提交
267 268 269
            init_hidden = np.array(fetch_outs[1])
            init_cell = np.array(fetch_outs[2])

270 271
            total_loss += cost_eval
            iters += config.num_steps
P
phlrain 已提交
272 273 274 275

        ppl = np.exp(total_loss / iters)
        return ppl

276 277 278 279 280
    def get_log_interval(data_len):
        num_batchs = data_len // config.batch_size
        epoch_size = (num_batchs - 1) // config.num_steps
        log_interval = max(1, epoch_size // 10)
        return log_interval
P
phlrain 已提交
281

282 283 284
    def train_an_epoch(epoch_id, batch_times):
        # get train epoch size
        log_interval = get_log_interval(len(train_data))
285 286
        train_data_iter = reader.get_data_iter(train_data, config.batch_size *
                                               device_count, config.num_steps)
P
phlrain 已提交
287 288 289

        total_loss = 0
        iters = 0
H
Hongyu Liu 已提交
290 291

        init_hidden, init_cell = generate_init_data()
P
phlrain 已提交
292 293
        for batch_id, batch in enumerate(train_data_iter):
            input_data_feed = prepare_input(
294 295 296 297 298 299 300 301 302
                batch,
                init_hidden=init_hidden,
                init_cell=init_cell,
                epoch_id=epoch_id,
                with_lr=True,
                device_count=device_count)
            batch_start_time = time.time()
            fetch_outs = exe.run(train_program,
                                 feed=input_data_feed,
303 304 305 306
                                 fetch_list=[
                                     loss.name, "learning_rate",
                                     last_hidden.name, last_cell.name
                                 ],
P
phlrain 已提交
307
                                 use_program_cache=True)
308 309
            batch_time = time.time() - batch_start_time
            batch_times.append(batch_time)
P
phlrain 已提交
310 311

            cost_train = np.array(fetch_outs[0])
312
            lr = np.array(fetch_outs[1])
H
Hongyu Liu 已提交
313 314
            init_hidden = np.array(fetch_outs[2])
            init_cell = np.array(fetch_outs[3])
P
phlrain 已提交
315
            total_loss += cost_train
316
            iters += config.num_steps
P
phlrain 已提交
317 318
            if batch_id > 0 and batch_id % log_interval == 0:
                ppl = np.exp(total_loss / iters)
319 320 321
                print(
                    "-- Epoch:[%d]; Batch:[%d]; Time: %.5f s; ppl: %.5f, lr: %.5f"
                    % (epoch_id, batch_id, batch_time, ppl[0], lr[0]))
322 323 324 325 326 327
            
            # profiler tools for benchmark
            if args.profile and batch_id == log_interval:
                profiler.reset_profiler()
            elif args.profile and batch_id == (log_interval + 5):
                break
P
phlrain 已提交
328
        ppl = np.exp(total_loss / iters)
329
        return ppl
P
phlrain 已提交
330

331
    def train_an_epoch_dataloader(epoch_id, batch_times):
332 333
        # get train epoch size
        log_interval = get_log_interval(len(train_data))
P
phlrain 已提交
334

335
        init_hidden, init_cell = generate_init_data()
Z
zhengya01 已提交
336

337 338 339
        total_loss = 0
        iters = 0

340
        dataloader.start()
341 342 343 344 345 346 347 348 349 350 351 352 353 354
        batch_id = 0
        try:
            while True:
                data_feeds = {}
                if batch_id == 0:
                    batch_time = 0
                    batch_start_time = time.time()
                else:
                    batch_time = time.time() - batch_start_time
                    batch_times.append(batch_time)
                    batch_start_time = time.time()

                new_lr = generate_new_lr(epoch_id, device_count)
                data_feeds['learning_rate'] = new_lr
H
Hongyu Liu 已提交
355 356
                data_feeds["init_hidden"] = init_hidden
                data_feeds["init_cell"] = init_cell
357 358 359

                fetch_outs = exe.run(train_program,
                                     feed=data_feeds,
360 361 362 363
                                     fetch_list=[
                                         loss.name, "learning_rate",
                                         last_hidden.name, last_cell.name
                                     ],
364 365 366 367
                                     use_program_cache=True)

                cost_train = np.array(fetch_outs[0])
                lr = np.array(fetch_outs[1])
368 369
                init_hidden = np.array(fetch_outs[2])
                init_cell = np.array(fetch_outs[3])
370 371 372 373 374 375 376 377 378 379 380

                total_loss += cost_train
                iters += config.num_steps
                if batch_id > 0 and (log_interval == 0 or
                                     batch_id % log_interval == 0):
                    ppl = np.exp(total_loss / iters)
                    print(
                        "-- Epoch:[%d]; Batch:[%d]; Time: %.5f s; ppl: %.5f, lr: %.5f"
                        % (epoch_id, batch_id, batch_time, ppl[0], lr[0]))

                batch_id += 1
381 382 383 384 385
                # profiler tools for benchmark
                if args.profile and batch_id == log_interval:
                    profiler.reset_profiler()
                elif args.profile and batch_id == (log_interval + 5):
                    break
386
        except fluid.core.EOFException:
387
            dataloader.reset()
388 389 390 391 392 393

        batch_times.append(time.time() - batch_start_time)
        ppl = np.exp(total_loss / iters)
        return ppl

    def train():
394
        if args.use_dataloader:
395 396

            def data_gen():
397
                data_iter_size = config.batch_size
398 399 400 401 402 403 404 405
                train_batches = reader.get_data_iter(train_data, data_iter_size,
                                                     config.num_steps)
                for batch in train_batches:
                    x, y = batch
                    x = x.reshape((-1, config.num_steps, 1))
                    y = y.reshape((-1, 1))
                    yield x, y

406
            dataloader.set_batch_generator(data_gen)
407 408 409 410 411

        total_time = 0.0
        for epoch_id in range(config.max_epoch):
            batch_times = []
            epoch_start_time = time.time()
412 413
            if args.use_dataloader:
                train_ppl = train_an_epoch_dataloader(epoch_id, batch_times)
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
            else:
                train_ppl = train_an_epoch(epoch_id, batch_times)
            epoch_time = time.time() - epoch_start_time
            total_time += epoch_time
            print(
                "\nTrain epoch:[%d]; epoch Time: %.5f; ppl: %.5f; avg_time: %.5f steps/s \n"
                % (epoch_id, epoch_time, train_ppl[0],
                   len(batch_times) / sum(batch_times)))

            # FIXME(zjl): ppl[0] increases as batch_size increases. 
            # We should find a better way to calculate ppl by normalizing batch_size. 
            if device_count == 1 and config.batch_size <= 20 and epoch_id == 0 and train_ppl[
                    0] > 1000:
                # for bad init, after first epoch, the loss is over 1000
                # no more need to continue
                print(
                    "Parameters are randomly initialized and not good this time because the loss is over 1000 after the first epoch."
                )
                print("Abort this training process and please start again.")
                return

            if epoch_id == config.max_epoch - 1 and args.enable_ce:
                # kpis
                print("ptblm\tlstm_language_model_%s_duration_card%d\t%s" %
                      (args.rnn_model, device_count,
                       total_time / config.max_epoch))
                print("ptblm\tlstm_language_model_%s_loss_card%d\t%s" %
                      (args.rnn_model, device_count, train_ppl[0]))

            # NOTE(zjl): sometimes we have not enough data for eval if batch_size is large, i.e., 2100
            # Just skip to avoid error
            def is_valid_data(data, batch_size, num_steps):
                data_len = len(data)
                batch_len = data_len // batch_size
                epoch_size = (batch_len - 1) // num_steps
                return epoch_size >= 1

            valid_data_valid = is_valid_data(valid_data, config.batch_size,
                                             config.num_steps)
            if valid_data_valid:
                valid_ppl = eval(valid_data)
                print("Valid ppl: %.5f" % valid_ppl[0])
            else:
                print(
                    'WARNING: length of valid_data is {}, which is not enough for batch_size {} and num_steps {}'.
                    format(
                        len(valid_data), config.batch_size, config.num_steps))

462 463 464 465 466
            save_model_dir = os.path.join(args.save_model_dir, str(epoch_id))
            if not os.path.exists(save_model_dir):
                mkpath(save_model_dir)
            save_model_dir = os.path.join(save_model_dir, 'params')

467
            fluid.save(main_program, save_model_dir)
468
            print("Saved model to: %s.\n" % save_model_dir)
Z
zhengya01 已提交
469

470
    with profile_context(args.profile, args.profiler_path):
471 472
        train()

473 474 475 476 477 478
    test_ppl = eval(test_data)
    print("Test ppl:", test_ppl[0])


if __name__ == '__main__':
    main()