train.py 15.4 KB
Newer Older
P
phlrain 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import time
import os
import random

import math

import paddle
import paddle.fluid as fluid
import paddle.fluid.framework as framework
from paddle.fluid.executor import Executor

import reader

import sys
if sys.version[0] == '2':
    reload(sys)
    sys.setdefaultencoding("utf-8")
sys.path.append('..')
import os
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"

from args import *
Y
Yibing Liu 已提交
42 43
sys.path.append("../")
from models.language_model import lm_model
44
from config import RNNConfig
P
phlrain 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
import logging
import pickle

SEED = 123


def get_current_model_para(train_prog, train_exe):
    param_list = train_prog.block(0).all_parameters()
    param_name_list = [p.name for p in param_list]

    vals = {}
    for p_name in param_name_list:
        p_array = np.array(fluid.global_scope().find_var(p_name).get_tensor())
        vals[p_name] = p_array

    return vals


def save_para_npz(train_prog, train_exe):
    print("begin to save model to model_base")
    param_list = train_prog.block(0).all_parameters()
    param_name_list = [p.name for p in param_list]

    vals = {}
    for p_name in param_name_list:
        p_array = np.array(fluid.global_scope().find_var(p_name).get_tensor())
        vals[p_name] = p_array

    emb = vals["embedding_para"]
    print("begin to save model to model_base")
    np.savez("mode_base", **vals)


78
def main():
P
phlrain 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
    args = parse_args()
    logger = logging.getLogger("lm")
    logger.setLevel(logging.INFO)
    formatter = logging.Formatter(
        '%(asctime)s - %(name)s - %(levelname)s - %(message)s')
    if args.log_path:
        file_handler = logging.FileHandler(args.log_path)
        file_handler.setLevel(logging.INFO)
        file_handler.setFormatter(formatter)
        logger.addHandler(file_handler)
    else:
        console_handler = logging.StreamHandler()
        console_handler.setLevel(logging.INFO)
        console_handler.setFormatter(formatter)
        logger.addHandler(console_handler)
    logger.info('Running with args : {}'.format(args))

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
    config = RNNConfig(args)

    # define train program
    main_program = fluid.Program()
    startup_program = fluid.Program()
    if args.enable_ce:
        startup_program.random_seed = SEED
    with fluid.program_guard(main_program, startup_program):
        with fluid.unique_name.guard():
            res_vars = lm_model.lm_model(
                config.hidden_size,
                config.vocab_size,
                config.batch_size,
                num_layers=config.num_layers,
                num_steps=config.num_steps,
                init_scale=config.init_scale,
                dropout=config.dropout,
                rnn_model=config.rnn_model,
                use_py_reader=args.use_py_reader)

            if args.use_py_reader:
                py_reader = res_vars[-1]
                res_vars = res_vars[:-1]
            loss, last_hidden, last_cell, feed_order = res_vars

            fluid.clip.set_gradient_clip(
                clip=fluid.clip.GradientClipByGlobalNorm(
                    clip_norm=config.max_grad_norm))

            learning_rate = fluid.layers.create_global_var(
                name="learning_rate",
                shape=[1],
                value=1.0,
                dtype='float32',
                persistable=True)

            optimizer = fluid.optimizer.SGD(learning_rate=learning_rate)
            optimizer.minimize(loss)

    # define inference program
    inference_program = fluid.Program()
    inference_startup_program = fluid.Program()
    with fluid.program_guard(inference_program, inference_startup_program):
        with fluid.unique_name.guard():
            lm_model.lm_model(
                config.hidden_size,
                config.vocab_size,
                config.batch_size,
                num_layers=config.num_layers,
                num_steps=config.num_steps,
                init_scale=config.init_scale,
                dropout=config.dropout,
                rnn_model=config.rnn_model,
                use_py_reader=False)
    # Some op behaves differently for train and inference, we need to call
    # this clone function to ensure every op is right for inference.
    inference_program = inference_program.clone(for_test=True)
P
phlrain 已提交
153

Y
Yibing Liu 已提交
154
    place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace()
P
phlrain 已提交
155
    exe = Executor(place)
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
    exe.run(startup_program)

    device_count = len(fluid.cuda_places()) if args.use_gpu else len(
        fluid.cpu_places())

    exec_strategy = fluid.ExecutionStrategy()
    exec_strategy.num_threads = device_count
    exec_strategy.num_iteration_per_drop_scope = 100

    build_strategy = fluid.BuildStrategy()
    build_strategy.enable_inplace = True
    build_strategy.memory_optimize = False
    build_strategy.fuse_all_optimizer_ops = True

    if args.parallel:
        train_program = fluid.compiler.CompiledProgram(
            main_program).with_data_parallel(
                loss_name=loss.name,
                build_strategy=build_strategy,
                exec_strategy=exec_strategy)
    else:
        train_program = fluid.compiler.CompiledProgram(main_program)
P
phlrain 已提交
178 179 180 181 182 183 184

    data_path = args.data_path
    print("begin to load data")
    raw_data = reader.ptb_raw_data(data_path)
    print("finished load data")
    train_data, valid_data, test_data, _ = raw_data

185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
    def generate_init_data():
        init_hidden = np.zeros(
            (config.num_layers, config.batch_size, config.hidden_size),
            dtype='float32')
        init_cell = np.zeros(
            (config.num_layers, config.batch_size, config.hidden_size),
            dtype='float32')
        return init_hidden, init_cell

    def generate_new_lr(epoch_id=0, device_count=1):
        new_lr = config.base_learning_rate * (config.lr_decay**max(
            epoch_id + 1 - config.epoch_start_decay, 0.0))
        lr = np.ones((device_count), dtype='float32') * new_lr
        return lr

    def prepare_input(batch,
                      init_hidden=None,
                      init_cell=None,
                      epoch_id=0,
                      with_lr=True,
                      device_count=1):
P
phlrain 已提交
206
        x, y = batch
207
        x = x.reshape((-1, config.num_steps, 1))
P
phlrain 已提交
208 209
        y = y.reshape((-1, 1))

210
        res = {}
P
phlrain 已提交
211 212
        res['x'] = x
        res['y'] = y
213 214 215 216
        if init_hidden is not None:
            res['init_hidden'] = init_hidden
        if init_cell is not None:
            res['init_cell'] = init_cell
P
phlrain 已提交
217
        if with_lr:
218
            res['learning_rate'] = generate_new_lr(epoch_id, device_count)
P
phlrain 已提交
219 220 221 222 223

        return res

    def eval(data):
        # when eval the batch_size set to 1
224 225
        eval_data_iter = reader.get_data_iter(data, config.batch_size,
                                              config.num_steps)
P
phlrain 已提交
226 227
        total_loss = 0.0
        iters = 0
228
        init_hidden, init_cell = generate_init_data()
P
phlrain 已提交
229 230
        for batch_id, batch in enumerate(eval_data_iter):
            input_data_feed = prepare_input(
231
                batch, init_hidden, init_cell, epoch_id=0, with_lr=False)
P
phlrain 已提交
232
            fetch_outs = exe.run(
233
                program=inference_program,
P
phlrain 已提交
234
                feed=input_data_feed,
L
liuhongyu 已提交
235 236
                fetch_list=[loss.name, last_hidden.name, last_cell.name],
                use_program_cache=True)
P
phlrain 已提交
237

238
            cost_eval = np.array(fetch_outs[0])
P
phlrain 已提交
239 240 241
            init_hidden = np.array(fetch_outs[1])
            init_cell = np.array(fetch_outs[2])

242 243
            total_loss += cost_eval
            iters += config.num_steps
P
phlrain 已提交
244 245 246 247

        ppl = np.exp(total_loss / iters)
        return ppl

248 249 250 251 252
    def get_log_interval(data_len):
        num_batchs = data_len // config.batch_size
        epoch_size = (num_batchs - 1) // config.num_steps
        log_interval = max(1, epoch_size // 10)
        return log_interval
P
phlrain 已提交
253

254 255 256 257 258
    def train_an_epoch(epoch_id, batch_times):
        # get train epoch size
        log_interval = get_log_interval(len(train_data))
        train_data_iter = reader.get_data_iter(train_data, config.batch_size,
                                               config.num_steps)
P
phlrain 已提交
259 260 261 262

        total_loss = 0
        iters = 0
        for batch_id, batch in enumerate(train_data_iter):
263 264 265 266 267
            if batch_id == 0:
                init_hidden, init_cell = generate_init_data()
            else:
                init_hidden = None
                init_cell = None
P
phlrain 已提交
268
            input_data_feed = prepare_input(
269 270 271 272 273 274 275 276 277 278 279
                batch,
                init_hidden=init_hidden,
                init_cell=init_cell,
                epoch_id=epoch_id,
                with_lr=True,
                device_count=device_count)

            batch_start_time = time.time()
            fetch_outs = exe.run(train_program,
                                 feed=input_data_feed,
                                 fetch_list=[loss.name, "learning_rate"],
P
phlrain 已提交
280
                                 use_program_cache=True)
281 282
            batch_time = time.time() - batch_start_time
            batch_times.append(batch_time)
P
phlrain 已提交
283 284

            cost_train = np.array(fetch_outs[0])
285
            lr = np.array(fetch_outs[1])
P
phlrain 已提交
286 287

            total_loss += cost_train
288
            iters += config.num_steps
P
phlrain 已提交
289 290
            if batch_id > 0 and batch_id % log_interval == 0:
                ppl = np.exp(total_loss / iters)
291 292 293
                print(
                    "-- Epoch:[%d]; Batch:[%d]; Time: %.5f s; ppl: %.5f, lr: %.5f"
                    % (epoch_id, batch_id, batch_time, ppl[0], lr[0]))
P
phlrain 已提交
294 295

        ppl = np.exp(total_loss / iters)
296
        return ppl
P
phlrain 已提交
297

298 299 300
    def train_an_epoch_py_reader(epoch_id, batch_times):
        # get train epoch size
        log_interval = get_log_interval(len(train_data))
P
phlrain 已提交
301

302
        init_hidden, init_cell = generate_init_data()
Z
zhengya01 已提交
303

304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
        total_loss = 0
        iters = 0

        py_reader.start()
        batch_id = 0
        try:
            while True:
                data_feeds = {}
                if batch_id == 0:
                    batch_time = 0
                    batch_start_time = time.time()
                    data_feeds["init_hidden"] = init_hidden
                    data_feeds["init_cell"] = init_cell
                else:
                    batch_time = time.time() - batch_start_time
                    batch_times.append(batch_time)
                    batch_start_time = time.time()

                new_lr = generate_new_lr(epoch_id, device_count)
                data_feeds['learning_rate'] = new_lr

                fetch_outs = exe.run(train_program,
                                     feed=data_feeds,
                                     fetch_list=[loss.name, "learning_rate"],
                                     use_program_cache=True)

                cost_train = np.array(fetch_outs[0])
                lr = np.array(fetch_outs[1])

                total_loss += cost_train
                iters += config.num_steps
                if batch_id > 0 and (log_interval == 0 or
                                     batch_id % log_interval == 0):
                    ppl = np.exp(total_loss / iters)
                    print(
                        "-- Epoch:[%d]; Batch:[%d]; Time: %.5f s; ppl: %.5f, lr: %.5f"
                        % (epoch_id, batch_id, batch_time, ppl[0], lr[0]))

                batch_id += 1
        except fluid.core.EOFException:
            py_reader.reset()

        batch_times.append(time.time() - batch_start_time)
        ppl = np.exp(total_loss / iters)
        return ppl

    def train():
        if args.use_py_reader:

            def data_gen():
                data_iter_size = config.batch_size // device_count
                train_batches = reader.get_data_iter(train_data, data_iter_size,
                                                     config.num_steps)
                for batch in train_batches:
                    x, y = batch
                    x = x.reshape((-1, config.num_steps, 1))
                    y = y.reshape((-1, 1))
                    yield x, y

            py_reader.decorate_tensor_provider(data_gen)

        total_time = 0.0
        for epoch_id in range(config.max_epoch):
            batch_times = []
            epoch_start_time = time.time()
            if args.use_py_reader:
                train_ppl = train_an_epoch_py_reader(epoch_id, batch_times)
            else:
                train_ppl = train_an_epoch(epoch_id, batch_times)
            epoch_time = time.time() - epoch_start_time
            total_time += epoch_time
            print(
                "\nTrain epoch:[%d]; epoch Time: %.5f; ppl: %.5f; avg_time: %.5f steps/s \n"
                % (epoch_id, epoch_time, train_ppl[0],
                   len(batch_times) / sum(batch_times)))

            # FIXME(zjl): ppl[0] increases as batch_size increases. 
            # We should find a better way to calculate ppl by normalizing batch_size. 
            if device_count == 1 and config.batch_size <= 20 and epoch_id == 0 and train_ppl[
                    0] > 1000:
                # for bad init, after first epoch, the loss is over 1000
                # no more need to continue
                print(
                    "Parameters are randomly initialized and not good this time because the loss is over 1000 after the first epoch."
                )
                print("Abort this training process and please start again.")
                return

            if epoch_id == config.max_epoch - 1 and args.enable_ce:
                # kpis
                print("ptblm\tlstm_language_model_%s_duration_card%d\t%s" %
                      (args.rnn_model, device_count,
                       total_time / config.max_epoch))
                print("ptblm\tlstm_language_model_%s_loss_card%d\t%s" %
                      (args.rnn_model, device_count, train_ppl[0]))

            # NOTE(zjl): sometimes we have not enough data for eval if batch_size is large, i.e., 2100
            # Just skip to avoid error
            def is_valid_data(data, batch_size, num_steps):
                data_len = len(data)
                batch_len = data_len // batch_size
                epoch_size = (batch_len - 1) // num_steps
                return epoch_size >= 1

            valid_data_valid = is_valid_data(valid_data, config.batch_size,
                                             config.num_steps)
            if valid_data_valid:
                valid_ppl = eval(valid_data)
                print("Valid ppl: %.5f" % valid_ppl[0])
            else:
                print(
                    'WARNING: length of valid_data is {}, which is not enough for batch_size {} and num_steps {}'.
                    format(
                        len(valid_data), config.batch_size, config.num_steps))

            save_model_dir = os.path.join(args.save_model_dir, str(epoch_id))
            fluid.io.save_persistables(
                executor=exe, dirname=save_model_dir, main_program=main_program)
            print("Saved model to: %s.\n" % save_model_dir)
Z
zhengya01 已提交
423

P
phlrain 已提交
424
    train()
425 426 427 428 429 430
    test_ppl = eval(test_data)
    print("Test ppl:", test_ppl[0])


if __name__ == '__main__':
    main()