infer.py 8.2 KB
Newer Older
L
lvmengsi 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
#copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import argparse
import functools
import os
from PIL import Image
import paddle.fluid as fluid
import paddle
import numpy as np
from scipy.misc import imsave
import glob
from util.config import add_arguments, print_arguments

parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
# yapf: disable
add_arg('model_net',         str,   'cgan',            "The model used")
L
lvmengsi 已提交
34
add_arg('net_G',             str,   "resnet_9block",   "Choose the CycleGAN and Pix2pix generator's network, choose in [resnet_9block|resnet_6block|unet_128|unet_256]")
L
lvmengsi 已提交
35 36 37 38 39 40 41 42 43
add_arg('input',             str,   None,              "The images to be infered.")
add_arg('init_model',        str,   None,              "The init model file of directory.")
add_arg('output',            str,   "./infer_result",  "The directory the infer result to be saved to.")
add_arg('input_style',       str,   "A",               "The style of the input, A or B")
add_arg('norm_type',         str,   "batch_norm",      "Which normalization to used")
add_arg('use_gpu',           bool,  True,              "Whether to use GPU to train.")
add_arg('dropout',           bool,  False,             "Whether to use dropout")
add_arg('data_shape',        int,   256,               "The shape of load image")
add_arg('g_base_dims',       int,   64,                "Base channels in CycleGAN generator")
L
lvmengsi 已提交
44 45 46 47 48 49 50 51 52 53 54 55
add_arg('c_dim',             int,   13,                "the size of attrs")
add_arg('use_gru',           bool,  False,             "Whether to use GRU")
add_arg('crop_size',         int,   178,               "crop size")
add_arg('image_size',        int,   128,               "image size")
add_arg('selected_attrs',    str,
    "Bald,Bangs,Black_Hair,Blond_Hair,Brown_Hair,Bushy_Eyebrows,Eyeglasses,Male,Mouth_Slightly_Open,Mustache,No_Beard,Pale_Skin,Young",
"the attributes we selected to change")
add_arg('batch_size',        int,   16,                "batch size when test")
add_arg('test_list',       str,   "./data/celeba/test_list_attr_celeba.txt",                "the test list file")
add_arg('dataset_dir',       str,   "./data/celeba/",                "the dataset directory")
add_arg('n_layers',        int,     5,      "default layers in generotor")
add_arg('gru_n_layers',    int,     4,       "default layers of GRU in generotor")
L
lvmengsi 已提交
56 57 58 59 60 61
# yapf: enable


def infer(args):
    data_shape = [-1, 3, args.data_shape, args.data_shape]
    input = fluid.layers.data(name='input', shape=data_shape, dtype='float32')
L
lvmengsi 已提交
62 63 64 65 66
    label_org_ = fluid.layers.data(
        name='label_org_', shape=[args.c_dim], dtype='float32')
    label_trg_ = fluid.layers.data(
        name='label_trg_', shape=[args.c_dim], dtype='float32')

L
lvmengsi 已提交
67 68
    model_name = 'net_G'
    if args.model_net == 'cyclegan':
L
lvmengsi 已提交
69 70
        from network.CycleGAN_network import CycleGAN_model
        model = CycleGAN_model()
L
lvmengsi 已提交
71
        if args.input_style == "A":
L
lvmengsi 已提交
72
            fake = model.network_G(input, name="GA", cfg=args)
L
lvmengsi 已提交
73
        elif args.input_style == "B":
L
lvmengsi 已提交
74
            fake = model.network_G(input, name="GB", cfg=args)
L
lvmengsi 已提交
75 76
        else:
            raise "Input with style [%s] is not supported." % args.input_style
Z
zhumanyu 已提交
77 78 79 80 81
    elif args.model_net == 'Pix2pix':
        from network.Pix2pix_network import Pix2pix_model
        model = Pix2pix_model()
        fake = model.network_G(input, "generator", cfg=args)

L
lvmengsi 已提交
82 83 84 85 86 87 88 89 90 91
    elif args.model_net == 'STGAN':
        from network.STGAN_network import STGAN_model
        model = STGAN_model()
        fake, _ = model.network_G(
            input, label_org_, label_trg_, cfg=args, name='net_G')
    elif args.model_net == 'AttGAN':
        from network.AttGAN_network import AttGAN_model
        model = AttGAN_model()
        fake, _ = model.network_G(
            input, label_org_, label_trg_, cfg=args, name='net_G')
L
lvmengsi 已提交
92
    else:
L
lvmengsi 已提交
93 94
        raise NotImplementedError("model_net {} is not support".format(
            args.model_net))
L
lvmengsi 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110

    # prepare environment
    place = fluid.CPUPlace()
    if args.use_gpu:
        place = fluid.CUDAPlace(0)
    exe = fluid.Executor(place)
    exe.run(fluid.default_startup_program())
    for var in fluid.default_main_program().global_block().all_parameters():
        print(var.name)
    print(args.init_model + '/' + model_name)
    fluid.io.load_persistables(exe, args.init_model + "/" + model_name)
    print('load params done')

    if not os.path.exists(args.output):
        os.makedirs(args.output)

L
lvmengsi 已提交
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
    if args.model_net == 'AttGAN' or args.model_net == 'STGAN':
        test_reader = celeba_reader_creator(
            image_dir=args.dataset_dir,
            list_filename=args.test_list,
            batch_size=args.batch_size,
            drop_last=False,
            args=args)
        reader_test = test_reader.get_test_reader(
            args, shuffle=False, return_name=True)
        for data in zip(reader_test()):
            real_img, label_org, name = data[0]
            print("read {}".format(name))
            label_trg = copy.deepcopy(label_org)
            tensor_img = fluid.LoDTensor()
            tensor_label_org = fluid.LoDTensor()
            tensor_label_trg = fluid.LoDTensor()
            tensor_label_org_ = fluid.LoDTensor()
            tensor_label_trg_ = fluid.LoDTensor()
            tensor_img.set(real_img, place)
            tensor_label_org.set(label_org, place)
            real_img_temp = np.squeeze(real_img).transpose([0, 2, 3, 1])
            images = [real_img_temp]
            for i in range(args.c_dim):
                label_trg_tmp = copy.deepcopy(label_trg)
                for j in range(args.batch_size):
                    label_trg_tmp[j][i] = 1.0 - label_trg_tmp[j][i]
                label_trg_ = map(lambda x: ((x * 2) - 1) * 0.5, label_trg_tmp)
                for j in range(args.batch_size):
                    label_trg_[j][i] = label_trg_[j][i] * 2.0
                tensor_label_org_.set(label_org, place)
                tensor_label_trg.set(label_trg, place)
                tensor_label_trg_.set(label_trg_, place)
                out = exe.run(feed={
                    "input": tensor_img,
                    "label_org_": tensor_label_org_,
                    "label_trg_": tensor_label_trg_
                },
                              fetch_list=fake.name)
                fake_temp = np.squeeze(out[0]).transpose([0, 2, 3, 1])
                images.append(fake_temp)
            images_concat = np.concatenate(images, 1)
            images_concat = np.concatenate(images_concat, 1)
            imsave(args.output + "/fake_img_" + name[0], (
                (images_concat + 1) * 127.5).astype(np.uint8))

    elif args.model_net == 'Pix2pix' or args.model_net == 'cyclegan':
        for file in glob.glob(args.input):
            print("read {}".format(file))
            image_name = os.path.basename(file)
            image = Image.open(file).convert('RGB')
            image = image.resize((256, 256), Image.BICUBIC)
            image = np.array(image).transpose([2, 0, 1]).astype('float32')
            image = image / 255.0
            image = (image - 0.5) / 0.5
            data = image[np.newaxis, :]
            tensor = fluid.LoDTensor()
            tensor.set(data, place)
L
lvmengsi 已提交
168

L
lvmengsi 已提交
169 170 171
            fake_temp = exe.run(fetch_list=[fake.name], feed={"input": tensor})
            fake_temp = np.squeeze(fake_temp[0]).transpose([1, 2, 0])
            input_temp = np.squeeze(data).transpose([1, 2, 0])
L
lvmengsi 已提交
172

L
lvmengsi 已提交
173 174 175 176 177
            imsave(args.output + "/fake_" + image_name, (
                (fake_temp + 1) * 127.5).astype(np.uint8))
    else:
        raise NotImplementedError("model_net {} is not support".format(
            args.model_net))
L
lvmengsi 已提交
178 179 180 181 182 183


if __name__ == "__main__":
    args = parser.parse_args()
    print_arguments(args)
    infer(args)