main.py 16.3 KB
Newer Older
L
Li Fuchen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yibing Liu 已提交
14 15 16 17
"""
Deep Attention Matching Network
"""
import sys
Y
Yibing Liu 已提交
18
import os
Y
Yibing Liu 已提交
19
import six
Y
Yibing Liu 已提交
20 21 22 23 24
import numpy as np
import time
import multiprocessing
import paddle
import paddle.fluid as fluid
Y
Yibing Liu 已提交
25 26 27 28
import reader as reader
from util import mkdir
import evaluation as eva
import config
Y
Yibing Liu 已提交
29

Y
Yibing Liu 已提交
30 31 32 33 34
try:
    import cPickle as pickle  #python 2
except ImportError as e:
    import pickle  #python 3

P
pkpk 已提交
35
from model_check import check_cuda
Y
Yibing Liu 已提交
36
from net import Net
Y
Yibing Liu 已提交
37

P
pkpk 已提交
38

Y
Yibing Liu 已提交
39
def evaluate(score_path, result_file_path):
Y
Yibing Liu 已提交
40 41 42
    """
    Evaluate both douban and ubuntu dataset
    """
Y
Yibing Liu 已提交
43
    if args.ext_eval:
Y
Yibing Liu 已提交
44
        result = eva.evaluate_douban(score_path)
Y
Yibing Liu 已提交
45
    else:
Y
Yibing Liu 已提交
46
        result = eva.evaluate_ubuntu(score_path)
Y
Yibing Liu 已提交
47 48 49
    #write evaluation result
    with open(result_file_path, 'w') as out_file:
        for p_at in result:
Y
Yibing Liu 已提交
50
            out_file.write(p_at + '\t' + str(result[p_at]) + '\n')
Y
Yibing Liu 已提交
51 52 53 54 55 56
    print('finish evaluation')
    print(time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time())))


def test_with_feed(exe, program, feed_names, fetch_list, score_path, batches,
                   batch_num, dev_count):
Y
Yibing Liu 已提交
57 58 59
    """
    Test with feed
    """
Y
Yibing Liu 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
    score_file = open(score_path, 'w')
    for it in six.moves.xrange(batch_num // dev_count):
        feed_list = []
        for dev in six.moves.xrange(dev_count):
            val_index = it * dev_count + dev
            batch_data = reader.make_one_batch_input(batches, val_index)
            feed_dict = dict(zip(feed_names, batch_data))
            feed_list.append(feed_dict)

            predicts = exe.run(feed=feed_list, fetch_list=fetch_list)

            scores = np.array(predicts[0])
            for dev in six.moves.xrange(dev_count):
                val_index = it * dev_count + dev
                for i in six.moves.xrange(args.batch_size):
                    score_file.write(
                        str(scores[args.batch_size * dev + i][0]) + '\t' + str(
                            batches["label"][val_index][i]) + '\n')
    score_file.close()


def test_with_pyreader(exe, program, pyreader, fetch_list, score_path, batches,
                       batch_num, dev_count):
Y
Yibing Liu 已提交
83 84 85
    """
    Test with pyreader
    """
P
pkpk 已提交
86

Y
Yibing Liu 已提交
87
    def data_provider():
Y
Yibing Liu 已提交
88 89 90
        """
        Data reader
        """
Y
Yibing Liu 已提交
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
        for index in six.moves.xrange(batch_num):
            yield reader.make_one_batch_input(batches, index)

    score_file = open(score_path, 'w')
    pyreader.decorate_tensor_provider(data_provider)
    it = 0
    pyreader.start()
    while True:
        try:
            predicts = exe.run(fetch_list=fetch_list)

            scores = np.array(predicts[0])
            for dev in six.moves.xrange(dev_count):
                val_index = it * dev_count + dev
                for i in six.moves.xrange(args.batch_size):
                    score_file.write(
                        str(scores[args.batch_size * dev + i][0]) + '\t' + str(
                            batches["label"][val_index][i]) + '\n')
            it += 1
        except fluid.core.EOFException:
            pyreader.reset()
            break
    score_file.close()


Y
Yibing Liu 已提交
116
def train(args):
Y
Yibing Liu 已提交
117 118 119
    """
    Train Program
    """
Y
Yibing Liu 已提交
120 121 122
    if not os.path.exists(args.save_path):
        os.makedirs(args.save_path)

Y
Yibing Liu 已提交
123 124 125 126 127 128 129 130 131
    # data data_config
    data_conf = {
        "batch_size": args.batch_size,
        "max_turn_num": args.max_turn_num,
        "max_turn_len": args.max_turn_len,
        "_EOS_": args._EOS_,
    }

    dam = Net(args.max_turn_num, args.max_turn_len, args.vocab_size,
Y
Yibing Liu 已提交
132 133
              args.emb_size, args.stack_num, args.channel1_num,
              args.channel2_num)
Y
Yibing Liu 已提交
134

Y
Yibing Liu 已提交
135 136
    train_program = fluid.Program()
    train_startup = fluid.Program()
Y
Yibing Liu 已提交
137 138 139
    if "CE_MODE_X" in os.environ:
        train_program.random_seed = 110
        train_startup.random_seed = 110
Y
Yibing Liu 已提交
140 141 142 143 144 145 146 147 148 149 150
    with fluid.program_guard(train_program, train_startup):
        with fluid.unique_name.guard():
            if args.use_pyreader:
                train_pyreader = dam.create_py_reader(
                    capacity=10, name='train_reader')
            else:
                dam.create_data_layers()
            loss, logits = dam.create_network()
            loss.persistable = True
            logits.persistable = True
            # gradient clipping
Y
Yibing Liu 已提交
151 152
            fluid.clip.set_gradient_clip(clip=fluid.clip.GradientClipByValue(
                max=1.0, min=-1.0))
Y
Yibing Liu 已提交
153 154 155 156 157 158 159 160 161 162 163

            optimizer = fluid.optimizer.Adam(
                learning_rate=fluid.layers.exponential_decay(
                    learning_rate=args.learning_rate,
                    decay_steps=400,
                    decay_rate=0.9,
                    staircase=True))
            optimizer.minimize(loss)

    test_program = fluid.Program()
    test_startup = fluid.Program()
Y
Yibing Liu 已提交
164 165 166
    if "CE_MODE_X" in os.environ:
        test_program.random_seed = 110
        test_startup.random_seed = 110
Y
Yibing Liu 已提交
167 168 169 170 171 172 173 174 175 176 177 178 179
    with fluid.program_guard(test_program, test_startup):
        with fluid.unique_name.guard():
            if args.use_pyreader:
                test_pyreader = dam.create_py_reader(
                    capacity=10, name='test_reader')
            else:
                dam.create_data_layers()

            loss, logits = dam.create_network()
            loss.persistable = True
            logits.persistable = True

    test_program = test_program.clone(for_test=True)
Y
Yibing Liu 已提交
180 181 182 183 184 185

    if args.use_cuda:
        place = fluid.CUDAPlace(0)
        dev_count = fluid.core.get_cuda_device_count()
    else:
        place = fluid.CPUPlace()
S
fix bug  
sneaxiy 已提交
186
        dev_count = int(os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
Y
Yibing Liu 已提交
187 188

    print("device count %d" % dev_count)
Y
Yibing Liu 已提交
189
    print("theoretical memory usage: ")
L
Li Fuchen 已提交
190 191
    print(fluid.contrib.memory_usage(
        program=train_program, batch_size=args.batch_size))
Y
Yibing Liu 已提交
192 193

    exe = fluid.Executor(place)
Y
Yibing Liu 已提交
194 195
    exe.run(train_startup)
    exe.run(test_startup)
Y
Yibing Liu 已提交
196 197 198 199 200 201 202 203 204 205 206

    train_exe = fluid.ParallelExecutor(
        use_cuda=args.use_cuda, loss_name=loss.name, main_program=train_program)

    test_exe = fluid.ParallelExecutor(
        use_cuda=args.use_cuda,
        main_program=test_program,
        share_vars_from=train_exe)

    if args.word_emb_init is not None:
        print("start loading word embedding init ...")
Y
Yibing Liu 已提交
207 208 209 210 211 212 213 214
        if six.PY2:
            word_emb = np.array(pickle.load(open(args.word_emb_init,
                                                 'rb'))).astype('float32')
        else:
            word_emb = np.array(
                pickle.load(
                    open(args.word_emb_init, 'rb'), encoding="bytes")).astype(
                        'float32')
Y
Yibing Liu 已提交
215 216
        dam.set_word_embedding(word_emb, place)
        print("finish init word embedding  ...")
Y
Yibing Liu 已提交
217 218

    print("start loading data ...")
Y
Yibing Liu 已提交
219 220 221 222 223
    with open(args.data_path, 'rb') as f:
        if six.PY2:
            train_data, val_data, test_data = pickle.load(f)
        else:
            train_data, val_data, test_data = pickle.load(f, encoding="bytes")
Y
Yibing Liu 已提交
224 225 226 227
    print("finish loading data ...")

    val_batches = reader.build_batches(val_data, data_conf)

Y
Yibing Liu 已提交
228
    batch_num = len(train_data[six.b('y')]) // args.batch_size
Y
Yibing Liu 已提交
229 230
    val_batch_num = len(val_batches["response"])

Y
Yibing Liu 已提交
231 232
    print_step = max(1, batch_num // (dev_count * 100))
    save_step = max(1, batch_num // (dev_count * 10))
Y
Yibing Liu 已提交
233 234 235 236

    print("begin model training ...")
    print(time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time())))

Y
Yibing Liu 已提交
237
    def train_with_feed(step):
Y
Yibing Liu 已提交
238 239 240
        """
        Train on one epoch data by feeding
        """
Y
Yibing Liu 已提交
241
        ave_cost = 0.0
Y
Yibing Liu 已提交
242
        for it in six.moves.xrange(batch_num // dev_count):
Y
Yibing Liu 已提交
243
            feed_list = []
Y
Yibing Liu 已提交
244
            for dev in six.moves.xrange(dev_count):
Y
Yibing Liu 已提交
245
                index = it * dev_count + dev
Y
Yibing Liu 已提交
246 247
                batch_data = reader.make_one_batch_input(train_batches, index)
                feed_dict = dict(zip(dam.get_feed_names(), batch_data))
Y
Yibing Liu 已提交
248 249 250 251 252 253 254 255 256 257 258 259 260 261
                feed_list.append(feed_dict)

            cost = train_exe.run(feed=feed_list, fetch_list=[loss.name])

            ave_cost += np.array(cost[0]).mean()
            step = step + 1
            if step % print_step == 0:
                print("processed: [" + str(step * dev_count * 1.0 / batch_num) +
                      "] ave loss: [" + str(ave_cost / print_step) + "]")
                ave_cost = 0.0

            if (args.save_path is not None) and (step % save_step == 0):
                save_path = os.path.join(args.save_path, "step_" + str(step))
                print("Save model at step %d ... " % step)
L
Li Fuchen 已提交
262 263
                print(time.strftime('%Y-%m-%d %H:%M:%S',
                                    time.localtime(time.time())))
Y
Yibing Liu 已提交
264
                fluid.io.save_persistables(exe, save_path, train_program)
Y
Yibing Liu 已提交
265 266

                score_path = os.path.join(args.save_path, 'score.' + str(step))
Y
Yibing Liu 已提交
267 268 269 270
                test_with_feed(test_exe, test_program,
                               dam.get_feed_names(), [logits.name], score_path,
                               val_batches, val_batch_num, dev_count)

Y
Yibing Liu 已提交
271 272
                result_file_path = os.path.join(args.save_path,
                                                'result.' + str(step))
Y
Yibing Liu 已提交
273
                evaluate(score_path, result_file_path)
Y
Yibing Liu 已提交
274
        return step, np.array(cost[0]).mean()
Y
Yibing Liu 已提交
275 276

    def train_with_pyreader(step):
Y
Yibing Liu 已提交
277 278 279
        """
        Train on one epoch with pyreader
        """
P
pkpk 已提交
280

Y
Yibing Liu 已提交
281
        def data_provider():
Y
Yibing Liu 已提交
282 283 284
            """
            Data reader
            """
Y
Yibing Liu 已提交
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
            for index in six.moves.xrange(batch_num):
                yield reader.make_one_batch_input(train_batches, index)

        train_pyreader.decorate_tensor_provider(data_provider)

        ave_cost = 0.0
        train_pyreader.start()
        while True:
            try:
                cost = train_exe.run(fetch_list=[loss.name])

                ave_cost += np.array(cost[0]).mean()
                step = step + 1
                if step % print_step == 0:
                    print("processed: [" + str(step * dev_count * 1.0 /
                                               batch_num) + "] ave loss: [" +
                          str(ave_cost / print_step) + "]")
                    ave_cost = 0.0

                if (args.save_path is not None) and (step % save_step == 0):
                    save_path = os.path.join(args.save_path,
                                             "step_" + str(step))
                    print("Save model at step %d ... " % step)
L
Li Fuchen 已提交
308 309
                    print(time.strftime('%Y-%m-%d %H:%M:%S',
                                        time.localtime(time.time())))
Y
Yibing Liu 已提交
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
                    fluid.io.save_persistables(exe, save_path, train_program)

                    score_path = os.path.join(args.save_path,
                                              'score.' + str(step))
                    test_with_pyreader(test_exe, test_program, test_pyreader,
                                       [logits.name], score_path, val_batches,
                                       val_batch_num, dev_count)

                    result_file_path = os.path.join(args.save_path,
                                                    'result.' + str(step))
                    evaluate(score_path, result_file_path)

            except fluid.core.EOFException:
                train_pyreader.reset()
                break
Y
Yibing Liu 已提交
325
        return step, np.array(cost[0]).mean()
Y
Yibing Liu 已提交
326 327

    # train over different epoches
Y
Yibing Liu 已提交
328
    global_step, train_time = 0, 0.0
Y
Yibing Liu 已提交
329
    for epoch in six.moves.xrange(args.num_scan_data):
Y
Yibing Liu 已提交
330 331
        shuffle_train = reader.unison_shuffle(
            train_data, seed=110 if ("CE_MODE_X" in os.environ) else None)
Y
Yibing Liu 已提交
332 333
        train_batches = reader.build_batches(shuffle_train, data_conf)

Y
Yibing Liu 已提交
334
        begin_time = time.time()
Y
Yibing Liu 已提交
335
        if args.use_pyreader:
Y
Yibing Liu 已提交
336
            global_step, last_cost = train_with_pyreader(global_step)
Y
Yibing Liu 已提交
337
        else:
Y
Yibing Liu 已提交
338
            global_step, last_cost = train_with_feed(global_step)
L
lujun 已提交
339 340 341

        pass_time_cost = time.time() - begin_time
        train_time += pass_time_cost
342
        print("Pass {0}, pass_time_cost {1}"
L
lujun 已提交
343
              .format(epoch, "%2.2f sec" % pass_time_cost))
Y
Yibing Liu 已提交
344 345
    # For internal continuous evaluation
    if "CE_MODE_X" in os.environ:
346 347 348
        card_num = get_cards()
        print("kpis\ttrain_cost_card%d\t%f" % (card_num, last_cost))
        print("kpis\ttrain_duration_card%d\t%f" % (card_num, train_time))
Y
Yibing Liu 已提交
349 350


Y
Yibing Liu 已提交
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
def test(args):
    """
    Test
    """
    if not os.path.exists(args.save_path):
        mkdir(args.save_path)
    if not os.path.exists(args.model_path):
        raise ValueError("Invalid model init path %s" % args.model_path)
    # data data_config
    data_conf = {
        "batch_size": args.batch_size,
        "max_turn_num": args.max_turn_num,
        "max_turn_len": args.max_turn_len,
        "_EOS_": args._EOS_,
    }

    dam = Net(args.max_turn_num, args.max_turn_len, args.vocab_size,
              args.emb_size, args.stack_num, args.channel1_num,
              args.channel2_num)
    dam.create_data_layers()
    loss, logits = dam.create_network()

    loss.persistable = True
    logits.persistable = True

    # gradient clipping
    fluid.clip.set_gradient_clip(clip=fluid.clip.GradientClipByValue(
        max=1.0, min=-1.0))

    test_program = fluid.default_main_program().clone(for_test=True)
    optimizer = fluid.optimizer.Adam(
        learning_rate=fluid.layers.exponential_decay(
            learning_rate=args.learning_rate,
            decay_steps=400,
            decay_rate=0.9,
            staircase=True))
    optimizer.minimize(loss)

    if args.use_cuda:
        place = fluid.CUDAPlace(0)
        dev_count = fluid.core.get_cuda_device_count()
    else:
        place = fluid.CPUPlace()
        #dev_count = multiprocessing.cpu_count()
        dev_count = 1

    exe = fluid.Executor(place)
    exe.run(fluid.default_startup_program())

    fluid.io.load_persistables(exe, args.model_path)

    test_exe = fluid.ParallelExecutor(
        use_cuda=args.use_cuda, main_program=test_program)

    print("start loading data ...")
    with open(args.data_path, 'rb') as f:
        if six.PY2:
            train_data, val_data, test_data = pickle.load(f)
        else:
            train_data, val_data, test_data = pickle.load(f, encoding="bytes")
    print("finish loading data ...")

    test_batches = reader.build_batches(test_data, data_conf)

    test_batch_num = len(test_batches["response"])

    print("test batch num: %d" % test_batch_num)

    print("begin inference ...")
    print(time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time())))

    score_path = os.path.join(args.save_path, 'score.txt')
    score_file = open(score_path, 'w')

    for it in six.moves.xrange(test_batch_num // dev_count):
        feed_list = []
        for dev in six.moves.xrange(dev_count):
            index = it * dev_count + dev
            batch_data = reader.make_one_batch_input(test_batches, index)
            feed_dict = dict(zip(dam.get_feed_names(), batch_data))
            feed_list.append(feed_dict)

        predicts = test_exe.run(feed=feed_list, fetch_list=[logits.name])

        scores = np.array(predicts[0])
        print("step = %d" % it)

        for dev in six.moves.xrange(dev_count):
            index = it * dev_count + dev
            for i in six.moves.xrange(args.batch_size):
                score_file.write(
                    str(scores[args.batch_size * dev + i][0]) + '\t' + str(
                        test_batches["label"][index][i]) + '\n')

    score_file.close()

    #write evaluation result
    if args.ext_eval:
        result = eva.evaluate_douban(score_path)
    else:
        result = eva.evaluate_ubuntu(score_path)
    result_file_path = os.path.join(args.save_path, 'result.txt')
    with open(result_file_path, 'w') as out_file:
        for metric in result:
            out_file.write(metric + '\t' + str(result[metric]) + '\n')
    print('finish test')
    print(time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time())))


460 461 462 463 464 465 466 467
def get_cards():
    num = 0
    cards = os.environ.get('CUDA_VISIBLE_DEVICES', '')
    if cards != '':
        num = len(cards.split(","))
    return num


Y
Yibing Liu 已提交
468
if __name__ == '__main__':
Y
Yibing Liu 已提交
469 470
    args = config.parse_args()
    config.print_arguments(args)
P
pkpk 已提交
471 472 473

    check_cuda(args.use_cuda)

Y
Yibing Liu 已提交
474 475 476 477 478
    if args.do_train:
        train(args)

    if args.do_test:
        test(args)