main.py 15.8 KB
Newer Older
Y
Yibing Liu 已提交
1 2 3 4
"""
Deep Attention Matching Network
"""
import sys
Y
Yibing Liu 已提交
5
import os
Y
Yibing Liu 已提交
6
import six
Y
Yibing Liu 已提交
7 8 9 10 11
import numpy as np
import time
import multiprocessing
import paddle
import paddle.fluid as fluid
Y
Yibing Liu 已提交
12 13 14 15
import reader as reader
from util import mkdir
import evaluation as eva
import config
Y
Yibing Liu 已提交
16

Y
Yibing Liu 已提交
17 18 19 20 21
try:
    import cPickle as pickle  #python 2
except ImportError as e:
    import pickle  #python 3

P
pkpk 已提交
22
from model_check import check_cuda
Y
Yibing Liu 已提交
23
from net import Net
Y
Yibing Liu 已提交
24

P
pkpk 已提交
25

Y
Yibing Liu 已提交
26
def evaluate(score_path, result_file_path):
Y
Yibing Liu 已提交
27 28 29
    """
    Evaluate both douban and ubuntu dataset
    """
Y
Yibing Liu 已提交
30
    if args.ext_eval:
Y
Yibing Liu 已提交
31
        result = eva.evaluate_douban(score_path)
Y
Yibing Liu 已提交
32
    else:
Y
Yibing Liu 已提交
33
        result = eva.evaluate_ubuntu(score_path)
Y
Yibing Liu 已提交
34 35 36
    #write evaluation result
    with open(result_file_path, 'w') as out_file:
        for p_at in result:
Y
Yibing Liu 已提交
37
            out_file.write(p_at + '\t' + str(result[p_at]) + '\n')
Y
Yibing Liu 已提交
38 39 40 41 42 43
    print('finish evaluation')
    print(time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time())))


def test_with_feed(exe, program, feed_names, fetch_list, score_path, batches,
                   batch_num, dev_count):
Y
Yibing Liu 已提交
44 45 46
    """
    Test with feed
    """
Y
Yibing Liu 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
    score_file = open(score_path, 'w')
    for it in six.moves.xrange(batch_num // dev_count):
        feed_list = []
        for dev in six.moves.xrange(dev_count):
            val_index = it * dev_count + dev
            batch_data = reader.make_one_batch_input(batches, val_index)
            feed_dict = dict(zip(feed_names, batch_data))
            feed_list.append(feed_dict)

            predicts = exe.run(feed=feed_list, fetch_list=fetch_list)

            scores = np.array(predicts[0])
            for dev in six.moves.xrange(dev_count):
                val_index = it * dev_count + dev
                for i in six.moves.xrange(args.batch_size):
                    score_file.write(
                        str(scores[args.batch_size * dev + i][0]) + '\t' + str(
                            batches["label"][val_index][i]) + '\n')
    score_file.close()


def test_with_pyreader(exe, program, pyreader, fetch_list, score_path, batches,
                       batch_num, dev_count):
Y
Yibing Liu 已提交
70 71 72
    """
    Test with pyreader
    """
P
pkpk 已提交
73

Y
Yibing Liu 已提交
74
    def data_provider():
Y
Yibing Liu 已提交
75 76 77
        """
        Data reader
        """
Y
Yibing Liu 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
        for index in six.moves.xrange(batch_num):
            yield reader.make_one_batch_input(batches, index)

    score_file = open(score_path, 'w')
    pyreader.decorate_tensor_provider(data_provider)
    it = 0
    pyreader.start()
    while True:
        try:
            predicts = exe.run(fetch_list=fetch_list)

            scores = np.array(predicts[0])
            for dev in six.moves.xrange(dev_count):
                val_index = it * dev_count + dev
                for i in six.moves.xrange(args.batch_size):
                    score_file.write(
                        str(scores[args.batch_size * dev + i][0]) + '\t' + str(
                            batches["label"][val_index][i]) + '\n')
            it += 1
        except fluid.core.EOFException:
            pyreader.reset()
            break
    score_file.close()


Y
Yibing Liu 已提交
103
def train(args):
Y
Yibing Liu 已提交
104 105 106
    """
    Train Program
    """
Y
Yibing Liu 已提交
107 108 109
    if not os.path.exists(args.save_path):
        os.makedirs(args.save_path)

Y
Yibing Liu 已提交
110 111 112 113 114 115 116 117 118
    # data data_config
    data_conf = {
        "batch_size": args.batch_size,
        "max_turn_num": args.max_turn_num,
        "max_turn_len": args.max_turn_len,
        "_EOS_": args._EOS_,
    }

    dam = Net(args.max_turn_num, args.max_turn_len, args.vocab_size,
Y
Yibing Liu 已提交
119 120
              args.emb_size, args.stack_num, args.channel1_num,
              args.channel2_num)
Y
Yibing Liu 已提交
121

Y
Yibing Liu 已提交
122 123
    train_program = fluid.Program()
    train_startup = fluid.Program()
Y
Yibing Liu 已提交
124 125 126
    if "CE_MODE_X" in os.environ:
        train_program.random_seed = 110
        train_startup.random_seed = 110
Y
Yibing Liu 已提交
127 128 129 130 131 132 133 134 135 136 137
    with fluid.program_guard(train_program, train_startup):
        with fluid.unique_name.guard():
            if args.use_pyreader:
                train_pyreader = dam.create_py_reader(
                    capacity=10, name='train_reader')
            else:
                dam.create_data_layers()
            loss, logits = dam.create_network()
            loss.persistable = True
            logits.persistable = True
            # gradient clipping
Y
Yibing Liu 已提交
138 139
            fluid.clip.set_gradient_clip(clip=fluid.clip.GradientClipByValue(
                max=1.0, min=-1.0))
Y
Yibing Liu 已提交
140 141 142 143 144 145 146 147 148 149 150

            optimizer = fluid.optimizer.Adam(
                learning_rate=fluid.layers.exponential_decay(
                    learning_rate=args.learning_rate,
                    decay_steps=400,
                    decay_rate=0.9,
                    staircase=True))
            optimizer.minimize(loss)

    test_program = fluid.Program()
    test_startup = fluid.Program()
Y
Yibing Liu 已提交
151 152 153
    if "CE_MODE_X" in os.environ:
        test_program.random_seed = 110
        test_startup.random_seed = 110
Y
Yibing Liu 已提交
154 155 156 157 158 159 160 161 162 163 164 165 166
    with fluid.program_guard(test_program, test_startup):
        with fluid.unique_name.guard():
            if args.use_pyreader:
                test_pyreader = dam.create_py_reader(
                    capacity=10, name='test_reader')
            else:
                dam.create_data_layers()

            loss, logits = dam.create_network()
            loss.persistable = True
            logits.persistable = True

    test_program = test_program.clone(for_test=True)
Y
Yibing Liu 已提交
167 168 169 170 171 172

    if args.use_cuda:
        place = fluid.CUDAPlace(0)
        dev_count = fluid.core.get_cuda_device_count()
    else:
        place = fluid.CPUPlace()
S
fix bug  
sneaxiy 已提交
173
        dev_count = int(os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
Y
Yibing Liu 已提交
174 175

    print("device count %d" % dev_count)
Y
Yibing Liu 已提交
176
    print("theoretical memory usage: ")
L
lujun 已提交
177 178 179
    print(
        fluid.contrib.memory_usage(
            program=train_program, batch_size=args.batch_size))
Y
Yibing Liu 已提交
180 181

    exe = fluid.Executor(place)
Y
Yibing Liu 已提交
182 183
    exe.run(train_startup)
    exe.run(test_startup)
Y
Yibing Liu 已提交
184 185 186 187 188 189 190 191 192 193 194

    train_exe = fluid.ParallelExecutor(
        use_cuda=args.use_cuda, loss_name=loss.name, main_program=train_program)

    test_exe = fluid.ParallelExecutor(
        use_cuda=args.use_cuda,
        main_program=test_program,
        share_vars_from=train_exe)

    if args.word_emb_init is not None:
        print("start loading word embedding init ...")
Y
Yibing Liu 已提交
195 196 197 198 199 200 201 202
        if six.PY2:
            word_emb = np.array(pickle.load(open(args.word_emb_init,
                                                 'rb'))).astype('float32')
        else:
            word_emb = np.array(
                pickle.load(
                    open(args.word_emb_init, 'rb'), encoding="bytes")).astype(
                        'float32')
Y
Yibing Liu 已提交
203 204
        dam.set_word_embedding(word_emb, place)
        print("finish init word embedding  ...")
Y
Yibing Liu 已提交
205 206

    print("start loading data ...")
Y
Yibing Liu 已提交
207 208 209 210 211
    with open(args.data_path, 'rb') as f:
        if six.PY2:
            train_data, val_data, test_data = pickle.load(f)
        else:
            train_data, val_data, test_data = pickle.load(f, encoding="bytes")
Y
Yibing Liu 已提交
212 213 214 215
    print("finish loading data ...")

    val_batches = reader.build_batches(val_data, data_conf)

Y
Yibing Liu 已提交
216
    batch_num = len(train_data[six.b('y')]) // args.batch_size
Y
Yibing Liu 已提交
217 218
    val_batch_num = len(val_batches["response"])

Y
Yibing Liu 已提交
219 220
    print_step = max(1, batch_num // (dev_count * 100))
    save_step = max(1, batch_num // (dev_count * 10))
Y
Yibing Liu 已提交
221 222 223 224

    print("begin model training ...")
    print(time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time())))

Y
Yibing Liu 已提交
225
    def train_with_feed(step):
Y
Yibing Liu 已提交
226 227 228
        """
        Train on one epoch data by feeding
        """
Y
Yibing Liu 已提交
229
        ave_cost = 0.0
Y
Yibing Liu 已提交
230
        for it in six.moves.xrange(batch_num // dev_count):
Y
Yibing Liu 已提交
231
            feed_list = []
Y
Yibing Liu 已提交
232
            for dev in six.moves.xrange(dev_count):
Y
Yibing Liu 已提交
233
                index = it * dev_count + dev
Y
Yibing Liu 已提交
234 235
                batch_data = reader.make_one_batch_input(train_batches, index)
                feed_dict = dict(zip(dam.get_feed_names(), batch_data))
Y
Yibing Liu 已提交
236 237 238 239 240 241 242 243 244 245 246 247 248 249
                feed_list.append(feed_dict)

            cost = train_exe.run(feed=feed_list, fetch_list=[loss.name])

            ave_cost += np.array(cost[0]).mean()
            step = step + 1
            if step % print_step == 0:
                print("processed: [" + str(step * dev_count * 1.0 / batch_num) +
                      "] ave loss: [" + str(ave_cost / print_step) + "]")
                ave_cost = 0.0

            if (args.save_path is not None) and (step % save_step == 0):
                save_path = os.path.join(args.save_path, "step_" + str(step))
                print("Save model at step %d ... " % step)
L
lujun 已提交
250 251 252
                print(
                    time.strftime('%Y-%m-%d %H:%M:%S',
                                  time.localtime(time.time())))
Y
Yibing Liu 已提交
253
                fluid.io.save_persistables(exe, save_path, train_program)
Y
Yibing Liu 已提交
254 255

                score_path = os.path.join(args.save_path, 'score.' + str(step))
Y
Yibing Liu 已提交
256 257 258 259
                test_with_feed(test_exe, test_program,
                               dam.get_feed_names(), [logits.name], score_path,
                               val_batches, val_batch_num, dev_count)

Y
Yibing Liu 已提交
260 261
                result_file_path = os.path.join(args.save_path,
                                                'result.' + str(step))
Y
Yibing Liu 已提交
262
                evaluate(score_path, result_file_path)
Y
Yibing Liu 已提交
263
        return step, np.array(cost[0]).mean()
Y
Yibing Liu 已提交
264 265

    def train_with_pyreader(step):
Y
Yibing Liu 已提交
266 267 268
        """
        Train on one epoch with pyreader
        """
P
pkpk 已提交
269

Y
Yibing Liu 已提交
270
        def data_provider():
Y
Yibing Liu 已提交
271 272 273
            """
            Data reader
            """
Y
Yibing Liu 已提交
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
            for index in six.moves.xrange(batch_num):
                yield reader.make_one_batch_input(train_batches, index)

        train_pyreader.decorate_tensor_provider(data_provider)

        ave_cost = 0.0
        train_pyreader.start()
        while True:
            try:
                cost = train_exe.run(fetch_list=[loss.name])

                ave_cost += np.array(cost[0]).mean()
                step = step + 1
                if step % print_step == 0:
                    print("processed: [" + str(step * dev_count * 1.0 /
                                               batch_num) + "] ave loss: [" +
                          str(ave_cost / print_step) + "]")
                    ave_cost = 0.0

                if (args.save_path is not None) and (step % save_step == 0):
                    save_path = os.path.join(args.save_path,
                                             "step_" + str(step))
                    print("Save model at step %d ... " % step)
L
lujun 已提交
297 298 299
                    print(
                        time.strftime('%Y-%m-%d %H:%M:%S',
                                      time.localtime(time.time())))
Y
Yibing Liu 已提交
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
                    fluid.io.save_persistables(exe, save_path, train_program)

                    score_path = os.path.join(args.save_path,
                                              'score.' + str(step))
                    test_with_pyreader(test_exe, test_program, test_pyreader,
                                       [logits.name], score_path, val_batches,
                                       val_batch_num, dev_count)

                    result_file_path = os.path.join(args.save_path,
                                                    'result.' + str(step))
                    evaluate(score_path, result_file_path)

            except fluid.core.EOFException:
                train_pyreader.reset()
                break
Y
Yibing Liu 已提交
315
        return step, np.array(cost[0]).mean()
Y
Yibing Liu 已提交
316 317

    # train over different epoches
Y
Yibing Liu 已提交
318
    global_step, train_time = 0, 0.0
Y
Yibing Liu 已提交
319
    for epoch in six.moves.xrange(args.num_scan_data):
Y
Yibing Liu 已提交
320 321
        shuffle_train = reader.unison_shuffle(
            train_data, seed=110 if ("CE_MODE_X" in os.environ) else None)
Y
Yibing Liu 已提交
322 323
        train_batches = reader.build_batches(shuffle_train, data_conf)

Y
Yibing Liu 已提交
324
        begin_time = time.time()
Y
Yibing Liu 已提交
325
        if args.use_pyreader:
Y
Yibing Liu 已提交
326
            global_step, last_cost = train_with_pyreader(global_step)
Y
Yibing Liu 已提交
327
        else:
Y
Yibing Liu 已提交
328
            global_step, last_cost = train_with_feed(global_step)
L
lujun 已提交
329 330 331

        pass_time_cost = time.time() - begin_time
        train_time += pass_time_cost
332
        print("Pass {0}, pass_time_cost {1}"
L
lujun 已提交
333
              .format(epoch, "%2.2f sec" % pass_time_cost))
Y
Yibing Liu 已提交
334 335
    # For internal continuous evaluation
    if "CE_MODE_X" in os.environ:
336 337 338
        card_num = get_cards()
        print("kpis\ttrain_cost_card%d\t%f" % (card_num, last_cost))
        print("kpis\ttrain_duration_card%d\t%f" % (card_num, train_time))
Y
Yibing Liu 已提交
339 340


Y
Yibing Liu 已提交
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
def test(args):
    """
    Test
    """
    if not os.path.exists(args.save_path):
        mkdir(args.save_path)
    if not os.path.exists(args.model_path):
        raise ValueError("Invalid model init path %s" % args.model_path)
    # data data_config
    data_conf = {
        "batch_size": args.batch_size,
        "max_turn_num": args.max_turn_num,
        "max_turn_len": args.max_turn_len,
        "_EOS_": args._EOS_,
    }

    dam = Net(args.max_turn_num, args.max_turn_len, args.vocab_size,
              args.emb_size, args.stack_num, args.channel1_num,
              args.channel2_num)
    dam.create_data_layers()
    loss, logits = dam.create_network()

    loss.persistable = True
    logits.persistable = True

    # gradient clipping
    fluid.clip.set_gradient_clip(clip=fluid.clip.GradientClipByValue(
        max=1.0, min=-1.0))

    test_program = fluid.default_main_program().clone(for_test=True)
    optimizer = fluid.optimizer.Adam(
        learning_rate=fluid.layers.exponential_decay(
            learning_rate=args.learning_rate,
            decay_steps=400,
            decay_rate=0.9,
            staircase=True))
    optimizer.minimize(loss)

    if args.use_cuda:
        place = fluid.CUDAPlace(0)
        dev_count = fluid.core.get_cuda_device_count()
    else:
        place = fluid.CPUPlace()
        #dev_count = multiprocessing.cpu_count()
        dev_count = 1

    exe = fluid.Executor(place)
    exe.run(fluid.default_startup_program())

    fluid.io.load_persistables(exe, args.model_path)

    test_exe = fluid.ParallelExecutor(
        use_cuda=args.use_cuda, main_program=test_program)

    print("start loading data ...")
    with open(args.data_path, 'rb') as f:
        if six.PY2:
            train_data, val_data, test_data = pickle.load(f)
        else:
            train_data, val_data, test_data = pickle.load(f, encoding="bytes")
    print("finish loading data ...")

    test_batches = reader.build_batches(test_data, data_conf)

    test_batch_num = len(test_batches["response"])

    print("test batch num: %d" % test_batch_num)

    print("begin inference ...")
    print(time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time())))

    score_path = os.path.join(args.save_path, 'score.txt')
    score_file = open(score_path, 'w')

    for it in six.moves.xrange(test_batch_num // dev_count):
        feed_list = []
        for dev in six.moves.xrange(dev_count):
            index = it * dev_count + dev
            batch_data = reader.make_one_batch_input(test_batches, index)
            feed_dict = dict(zip(dam.get_feed_names(), batch_data))
            feed_list.append(feed_dict)

        predicts = test_exe.run(feed=feed_list, fetch_list=[logits.name])

        scores = np.array(predicts[0])
        print("step = %d" % it)

        for dev in six.moves.xrange(dev_count):
            index = it * dev_count + dev
            for i in six.moves.xrange(args.batch_size):
                score_file.write(
                    str(scores[args.batch_size * dev + i][0]) + '\t' + str(
                        test_batches["label"][index][i]) + '\n')

    score_file.close()

    #write evaluation result
    if args.ext_eval:
        result = eva.evaluate_douban(score_path)
    else:
        result = eva.evaluate_ubuntu(score_path)
    result_file_path = os.path.join(args.save_path, 'result.txt')
    with open(result_file_path, 'w') as out_file:
        for metric in result:
            out_file.write(metric + '\t' + str(result[metric]) + '\n')
    print('finish test')
    print(time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time())))


450 451 452 453 454 455 456 457
def get_cards():
    num = 0
    cards = os.environ.get('CUDA_VISIBLE_DEVICES', '')
    if cards != '':
        num = len(cards.split(","))
    return num


Y
Yibing Liu 已提交
458
if __name__ == '__main__':
Y
Yibing Liu 已提交
459 460
    args = config.parse_args()
    config.print_arguments(args)
P
pkpk 已提交
461 462 463

    check_cuda(args.use_cuda)

Y
Yibing Liu 已提交
464 465 466 467 468
    if args.do_train:
        train(args)

    if args.do_test:
        test(args)