train.py 3.9 KB
Newer Older
L
Liu Yi 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

""" Copy-paste from PaddleSeg with minor modifications. 
    https://github.com/PaddlePaddle/PaddleSeg/blob/release/2.1/train.py
"""

import argparse

import paddle

from smoke.cvlibs import manager, Config
from smoke.utils import logger
from smoke.core import train


def parse_args():
    parser = argparse.ArgumentParser(description='Model training')
    # params of training
    parser.add_argument(
        "--config", dest="cfg", help="The config file.", required=True, type=str)
    parser.add_argument(
        '--iters',
        dest='iters',
        help='iters for training',
        type=int,
        default=None)
    parser.add_argument(
        '--batch_size',
        dest='batch_size',
        help='Mini batch size of one gpu or cpu',
        type=int,
        default=None)
    parser.add_argument(
        '--learning_rate',
        dest='learning_rate',
        help='Learning rate',
        type=float,
        default=None)
    parser.add_argument(
        '--save_interval',
        dest='save_interval',
        help='How many iters to save a model snapshot once during training.',
        type=int,
        default=1000)
    parser.add_argument(
        '--resume_model',
        dest='resume_model',
        help='The path of resume model',
        type=str,
        default=None)
    parser.add_argument(
        '--save_dir',
        dest='save_dir',
        help='The directory for saving the model snapshot',
        type=str,
        default='./output')
    parser.add_argument(
        '--keep_checkpoint_max',
        dest='keep_checkpoint_max',
        help='Maximum number of checkpoints to save',
        type=int,
        default=5)
    parser.add_argument(
        '--num_workers',
        dest='num_workers',
        help='Num workers for data loader',
        type=int,
        default=0)
    parser.add_argument(
        '--log_iters',
        dest='log_iters',
        help='Display logging information at every log_iters',
        default=10,
        type=int)

    return parser.parse_args()


def main(args):

    paddle.set_device("gpu")

    cfg = Config(
        args.cfg,
        learning_rate=args.learning_rate,
        iters=args.iters,
        batch_size=args.batch_size)

    train_dataset = cfg.train_dataset
    if train_dataset is None:
        raise RuntimeError(
            'The training dataset is not specified in the configuration file.')
    elif len(train_dataset) == 0:
        raise ValueError(
            'The length of train_dataset is 0. Please check if your dataset is valid'
        )
    val_dataset = None #cfg.val_dataset  if args.do_eval else None
    losses = cfg.loss

    msg = '\n---------------Config Information---------------\n'
    msg += str(cfg)
    msg += '------------------------------------------------'
    logger.info(msg)

    train(
        cfg.model,
        train_dataset,
        val_dataset=val_dataset,
        optimizer=cfg.optimizer,
        loss_computation=cfg.loss,
        save_dir=args.save_dir,
        iters=cfg.iters,
        batch_size=cfg.batch_size,
        resume_model=args.resume_model,
        save_interval=args.save_interval,
        log_iters=args.log_iters,
        num_workers=args.num_workers,
        keep_checkpoint_max=args.keep_checkpoint_max)

if __name__ == '__main__':
    args = parse_args()
    main(args)