# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Copy-paste from PaddleSeg with minor modifications. https://github.com/PaddlePaddle/PaddleSeg/blob/release/2.1/train.py """ import argparse import paddle from smoke.cvlibs import manager, Config from smoke.utils import logger from smoke.core import train def parse_args(): parser = argparse.ArgumentParser(description='Model training') # params of training parser.add_argument( "--config", dest="cfg", help="The config file.", required=True, type=str) parser.add_argument( '--iters', dest='iters', help='iters for training', type=int, default=None) parser.add_argument( '--batch_size', dest='batch_size', help='Mini batch size of one gpu or cpu', type=int, default=None) parser.add_argument( '--learning_rate', dest='learning_rate', help='Learning rate', type=float, default=None) parser.add_argument( '--save_interval', dest='save_interval', help='How many iters to save a model snapshot once during training.', type=int, default=1000) parser.add_argument( '--resume_model', dest='resume_model', help='The path of resume model', type=str, default=None) parser.add_argument( '--save_dir', dest='save_dir', help='The directory for saving the model snapshot', type=str, default='./output') parser.add_argument( '--keep_checkpoint_max', dest='keep_checkpoint_max', help='Maximum number of checkpoints to save', type=int, default=5) parser.add_argument( '--num_workers', dest='num_workers', help='Num workers for data loader', type=int, default=0) parser.add_argument( '--log_iters', dest='log_iters', help='Display logging information at every log_iters', default=10, type=int) return parser.parse_args() def main(args): paddle.set_device("gpu") cfg = Config( args.cfg, learning_rate=args.learning_rate, iters=args.iters, batch_size=args.batch_size) train_dataset = cfg.train_dataset if train_dataset is None: raise RuntimeError( 'The training dataset is not specified in the configuration file.') elif len(train_dataset) == 0: raise ValueError( 'The length of train_dataset is 0. Please check if your dataset is valid' ) val_dataset = None #cfg.val_dataset if args.do_eval else None losses = cfg.loss msg = '\n---------------Config Information---------------\n' msg += str(cfg) msg += '------------------------------------------------' logger.info(msg) train( cfg.model, train_dataset, val_dataset=val_dataset, optimizer=cfg.optimizer, loss_computation=cfg.loss, save_dir=args.save_dir, iters=cfg.iters, batch_size=cfg.batch_size, resume_model=args.resume_model, save_interval=args.save_interval, log_iters=args.log_iters, num_workers=args.num_workers, keep_checkpoint_max=args.keep_checkpoint_max) if __name__ == '__main__': args = parse_args() main(args)