tune.py 5.5 KB
Newer Older
1
"""Beam search parameters tuning for DeepSpeech2 model."""
Y
Yibing Liu 已提交
2 3 4
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
5

6
import numpy as np
7 8
import distutils.util
import argparse
Y
Yibing Liu 已提交
9
import paddle.v2 as paddle
Y
Yibing Liu 已提交
10
from data_utils.data import DataGenerator
11
from model import DeepSpeech2Model
12 13
from error_rate import wer

14 15 16 17 18 19 20 21 22 23 24 25

def add_arg(argname, type, default, help, **kwargs):
    type = distutils.util.strtobool if type == bool else type
    parser.add_argument(
        "--" + argname,
        default=default,
        type=type,
        help=help + ' Default: %(default)s.',
        **kwargs)


# yapf: disable
26
parser = argparse.ArgumentParser(description=__doc__)
27 28 29
add_arg('num_samples',      int,    100,    "# of samples to infer.")
add_arg('trainer_count',    int,    8,      "# of Trainers (CPUs or GPUs).")
add_arg('beam_size',        int,    500,    "Beam search width.")
30
add_arg('parallels_bsearch',int,    12,     "# of CPUs for beam search.")
31 32 33
add_arg('num_conv_layers',  int,    2,      "# of convolution layers.")
add_arg('num_rnn_layers',   int,    3,      "# of recurrent layers.")
add_arg('rnn_layer_size',   int,    2048,   "# of recurrent cells per layer.")
34 35 36 37 38 39 40
add_arg('num_alphas',       int,    14,     "# of alpha candidates for tuning.")
add_arg('num_betas',        int,    20,     "# of beta candidates for tuning.")
add_arg('alpha_from',       float,  0.1,    "Where alpha starts tuning from.")
add_arg('alpha_to',         float,  0.36,   "Where alpha ends tuning with.")
add_arg('beta_from',        float,  0.05,   "Where beta starts tuning from.")
add_arg('beta_to',          float,  0.36,   "Where beta ends tuning with.")
add_arg('cutoff_prob',      float,  0.99,   "Cutoff probability for pruning.")
41
add_arg('use_gru',          bool,   False,  "Use GRUs instead of Simple RNNs.")
42
add_arg('use_gpu',          bool,   True,   "Use GPU or not.")
43 44
add_arg('share_rnn_weights',bool,   True,   "Share input-hidden weights across "
                                            "bi-directional RNNs. Not for GRU.")
45
add_arg('tune_manifest',    str,
46 47 48 49 50 51 52 53
        'datasets/manifest.test',
        "Filepath of manifest to tune.")
add_arg('mean_std_path',    str,
        'mean_std.npz',
        "Filepath of normalizer's mean & std.")
add_arg('vocab_path',       str,
        'datasets/vocab/eng_vocab.txt',
        "Filepath of vocabulary.")
54 55 56
add_arg('lang_model_path',  str,
        'lm/data/common_crawl_00.prune01111.trie.klm',
        "Filepath for language model.")
57 58 59 60
add_arg('model_path',       str,
        './checkpoints/params.latest.tar.gz',
        "If None, the training starts from scratch, "
        "otherwise, it resumes from the pre-trained model.")
61 62 63 64 65 66 67 68
add_arg('error_rate_type',  str,
        'wer',
        "Error rate type for evaluation.",
        choices=['wer', 'cer'])
add_arg('specgram_type',    str,
        'linear',
        "Audio feature type. Options: linear, mfcc.",
        choices=['linear', 'mfcc'])
69
args = parser.parse_args()
70
# yapf: disable
71 72


73

74
def tune():
Y
Yibing Liu 已提交
75
    """Tune parameters alpha and beta on one minibatch."""
76 77 78 79
    if not args.num_alphas >= 0:
        raise ValueError("num_alphas must be non-negative!")
    if not args.num_betas >= 0:
        raise ValueError("num_betas must be non-negative!")
80 81

    data_generator = DataGenerator(
82 83
        vocab_filepath=args.vocab_path,
        mean_std_filepath=args.mean_std_path,
Y
Yibing Liu 已提交
84
        augmentation_config='{}',
85
        specgram_type=args.specgram_type,
86
        num_threads=1)
Y
Yibing Liu 已提交
87
    batch_reader = data_generator.batch_reader_creator(
88
        manifest_path=args.tune_manifest,
89
        batch_size=args.num_samples,
Y
Yibing Liu 已提交
90 91
        sortagrad=False,
        shuffle_method=None)
92 93 94 95
    tune_data = batch_reader().next()
    target_transcripts = [
        ''.join([data_generator.vocab_list[token] for token in transcript])
        for _, transcript in tune_data
96 97
    ]

98 99 100 101 102
    ds2_model = DeepSpeech2Model(
        vocab_size=data_generator.vocab_size,
        num_conv_layers=args.num_conv_layers,
        num_rnn_layers=args.num_rnn_layers,
        rnn_layer_size=args.rnn_layer_size,
X
Xinghai Sun 已提交
103
        use_gru=args.use_gru,
104
        pretrained_model_path=args.model_path,
105
        share_rnn_weights=args.share_rnn_weights)
106

107 108 109 110 111 112
    # create grid for search
    cand_alphas = np.linspace(args.alpha_from, args.alpha_to, args.num_alphas)
    cand_betas = np.linspace(args.beta_from, args.beta_to, args.num_betas)
    params_grid = [(alpha, beta) for alpha in cand_alphas
                   for beta in cand_betas]

113
    ## tune parameters in loop
Y
Yibing Liu 已提交
114
    for alpha, beta in params_grid:
115 116
        result_transcripts = ds2_model.infer_batch(
            infer_data=tune_data,
117
            decoder_method='ctc_beam_search',
118 119
            beam_alpha=alpha,
            beam_beta=beta,
Y
Yibing Liu 已提交
120 121
            beam_size=args.beam_size,
            cutoff_prob=args.cutoff_prob,
122
            vocab_list=data_generator.vocab_list,
123 124
            language_model_path=args.lang_model_path,
            num_processes=args.parallels_bsearch)
125 126 127 128
        wer_sum, num_ins = 0.0, 0
        for target, result in zip(target_transcripts, result_transcripts):
            wer_sum += wer(target, result)
            num_ins += 1
129
        print("alpha = %f\tbeta = %f\tWER = %f" %
130
              (alpha, beta, wer_sum / num_ins))
131 132


133 134 135 136 137 138 139
def print_arguments(args):
    print("-----------  Configuration Arguments -----------")
    for arg, value in sorted(vars(args).iteritems()):
        print("%s: %s" % (arg, value))
    print("------------------------------------------------")


140
def main():
141
    print_arguments(args)
142
    paddle.init(use_gpu=args.use_gpu, trainer_count=args.trainer_count)
143 144 145 146 147
    tune()


if __name__ == '__main__':
    main()