Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
4b8fe7ec
M
models
项目概览
PaddlePaddle
/
models
1 年多 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
4b8fe7ec
编写于
6月 13, 2017
作者:
Y
Yibing Liu
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
enable lm in multiprocessing decoder & add script for params tuning
上级
ef1350f2
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
257 addition
and
9 deletion
+257
-9
deep_speech_2/decoder.py
deep_speech_2/decoder.py
+18
-5
deep_speech_2/infer.py
deep_speech_2/infer.py
+5
-4
deep_speech_2/tune.py
deep_speech_2/tune.py
+234
-0
未找到文件。
deep_speech_2/decoder.py
浏览文件 @
4b8fe7ec
...
...
@@ -73,7 +73,7 @@ class Scorer(object):
return
len
(
words
)
# execute evaluation
def
evaluate
(
self
,
sentence
):
def
__call__
(
self
,
sentence
):
lm
=
self
.
language_model_score
(
sentence
)
word_cnt
=
self
.
word_count
(
sentence
)
score
=
np
.
power
(
lm
,
self
.
_alpha
)
\
...
...
@@ -84,8 +84,9 @@ class Scorer(object):
def
ctc_beam_search_decoder
(
probs_seq
,
beam_size
,
vocabulary
,
blank_id
=
0
,
ext_scoring_func
=
None
,
blank_id
=
0
):
nproc
=
False
):
'''
Beam search decoder for CTC-trained network, using beam search with width
beam_size to find many paths to one label, return beam_size labels in
...
...
@@ -107,6 +108,8 @@ def ctc_beam_search_decoder(probs_seq,
:type external_scoring_function: function
:param blank_id: id of blank, default 0.
:type blank_id: int
:param nproc: Whether the decoder used in multiprocesses.
:type nproc: bool
:return: Decoding log probability and result string.
:rtype: list
...
...
@@ -122,6 +125,12 @@ def ctc_beam_search_decoder(probs_seq,
if
not
blank_id
<
probs_dim
:
raise
ValueError
(
"blank_id shouldn't be greater than probs dimension"
)
# If the decoder called in the multiprocesses, then use the global scorer
# instantiated in ctc_beam_search_decoder_nproc().
if
nproc
is
True
:
global
ext_nproc_scorer
ext_scoring_func
=
ext_nproc_scorer
## initialize
# the set containing selected prefixes
prefix_set_prev
=
{
'
\t
'
:
1.0
}
...
...
@@ -193,8 +202,8 @@ def ctc_beam_search_decoder(probs_seq,
def
ctc_beam_search_decoder_nproc
(
probs_split
,
beam_size
,
vocabulary
,
ext_scoring_func
=
None
,
blank_id
=
0
,
ext_scoring_func
=
None
,
num_processes
=
None
):
'''
Beam search decoder using multiple processes.
...
...
@@ -202,7 +211,6 @@ def ctc_beam_search_decoder_nproc(probs_split,
:param probs_seq: 3-D list with length batch_size, each element
is a 2-D list of probabilities can be used by
ctc_beam_search_decoder.
:type probs_seq: 3-D list
:param beam_size: Width for beam search.
:type beam_size: int
...
...
@@ -227,10 +235,15 @@ def ctc_beam_search_decoder_nproc(probs_split,
if
not
num_processes
>
0
:
raise
ValueError
(
"Number of processes must be positive!"
)
# use global variable to pass the externnal scorer to beam search decoder
global
ext_nproc_scorer
ext_nproc_scorer
=
ext_scoring_func
nproc
=
True
pool
=
multiprocessing
.
Pool
(
processes
=
num_processes
)
results
=
[]
for
i
,
probs_list
in
enumerate
(
probs_split
):
args
=
(
probs_list
,
beam_size
,
vocabulary
,
ext_scoring_func
,
blank_id
)
args
=
(
probs_list
,
beam_size
,
vocabulary
,
blank_id
,
None
,
nproc
)
results
.
append
(
pool
.
apply_async
(
ctc_beam_search_decoder
,
args
))
pool
.
close
()
...
...
deep_speech_2/infer.py
浏览文件 @
4b8fe7ec
...
...
@@ -9,6 +9,7 @@ import gzip
from
audio_data_utils
import
DataGenerator
from
model
import
deep_speech2
from
decoder
import
*
import
kenlm
from
error_rate
import
wer
parser
=
argparse
.
ArgumentParser
(
...
...
@@ -176,7 +177,7 @@ def infer():
probs_seq
=
probs
,
vocabulary
=
vocab_list
,
beam_size
=
args
.
beam_size
,
ext_scoring_func
=
ext_scorer
.
evaluate
,
ext_scoring_func
=
ext_scorer
,
blank_id
=
len
(
vocab_list
))
print
(
"
\n
Target Transcription:
\t
%s"
%
target_transcription
)
...
...
@@ -196,9 +197,9 @@ def infer():
probs_split
=
probs_split
,
vocabulary
=
vocab_list
,
beam_size
=
args
.
beam_size
,
#ext_scoring_func=ext_scorer.evaluate
,
ext_scoring_func
=
None
,
blank_id
=
len
(
vocab_list
)
)
ext_scoring_func
=
ext_scorer
,
blank_id
=
len
(
vocab_list
)
,
num_processes
=
1
)
for
i
,
beam_search_result
in
enumerate
(
beam_search_nproc_results
):
target_transcription
=
''
.
join
(
[
vocab_list
[
index
]
for
index
in
infer_data
[
i
][
1
]])
...
...
deep_speech_2/tune.py
0 → 100644
浏览文件 @
4b8fe7ec
"""
Tune parameters for beam search decoder in Deep Speech 2.
"""
import
paddle.v2
as
paddle
import
distutils.util
import
argparse
import
gzip
from
audio_data_utils
import
DataGenerator
from
model
import
deep_speech2
from
decoder
import
*
from
error_rate
import
wer
parser
=
argparse
.
ArgumentParser
(
description
=
'Parameters tuning script for ctc beam search decoder in Deep Speech 2.'
)
parser
.
add_argument
(
"--num_samples"
,
default
=
100
,
type
=
int
,
help
=
"Number of samples for parameters tuning. (default: %(default)s)"
)
parser
.
add_argument
(
"--num_conv_layers"
,
default
=
2
,
type
=
int
,
help
=
"Convolution layer number. (default: %(default)s)"
)
parser
.
add_argument
(
"--num_rnn_layers"
,
default
=
3
,
type
=
int
,
help
=
"RNN layer number. (default: %(default)s)"
)
parser
.
add_argument
(
"--rnn_layer_size"
,
default
=
512
,
type
=
int
,
help
=
"RNN layer cell number. (default: %(default)s)"
)
parser
.
add_argument
(
"--use_gpu"
,
default
=
True
,
type
=
distutils
.
util
.
strtobool
,
help
=
"Use gpu or not. (default: %(default)s)"
)
parser
.
add_argument
(
"--normalizer_manifest_path"
,
default
=
'data/manifest.libri.train-clean-100'
,
type
=
str
,
help
=
"Manifest path for normalizer. (default: %(default)s)"
)
parser
.
add_argument
(
"--decode_manifest_path"
,
default
=
'data/manifest.libri.test-100sample'
,
type
=
str
,
help
=
"Manifest path for decoding. (default: %(default)s)"
)
parser
.
add_argument
(
"--model_filepath"
,
default
=
'./params.tar.gz'
,
type
=
str
,
help
=
"Model filepath. (default: %(default)s)"
)
parser
.
add_argument
(
"--vocab_filepath"
,
default
=
'data/eng_vocab.txt'
,
type
=
str
,
help
=
"Vocabulary filepath. (default: %(default)s)"
)
parser
.
add_argument
(
"--decode_method"
,
default
=
'beam_search_nproc'
,
type
=
str
,
help
=
"Method for decoding, beam_search or beam_search_nproc. (default: %(default)s)"
)
parser
.
add_argument
(
"--beam_size"
,
default
=
500
,
type
=
int
,
help
=
"Width for beam search decoding. (default: %(default)d)"
)
parser
.
add_argument
(
"--num_results_per_sample"
,
default
=
1
,
type
=
int
,
help
=
"Number of outputs per sample in beam search. (default: %(default)d)"
)
parser
.
add_argument
(
"--language_model_path"
,
default
=
"./data/1Billion.klm"
,
type
=
str
,
help
=
"Path for language model. (default: %(default)s)"
)
parser
.
add_argument
(
"--alpha_from"
,
default
=
0.0
,
type
=
float
,
help
=
"Where alpha starts from, <= alpha_to. (default: %(default)f)"
)
parser
.
add_argument
(
"--alpha_stride"
,
default
=
0.001
,
type
=
float
,
help
=
"Step length for varying alpha. (default: %(default)f)"
)
parser
.
add_argument
(
"--alpha_to"
,
default
=
0.01
,
type
=
float
,
help
=
"Where alpha ends with, >= alpha_from. (default: %(default)f)"
)
parser
.
add_argument
(
"--beta_from"
,
default
=
0.0
,
type
=
float
,
help
=
"Where beta starts from, <= beta_to. (default: %(default)f)"
)
parser
.
add_argument
(
"--beta_stride"
,
default
=
0.01
,
type
=
float
,
help
=
"Step length for varying beta. (default: %(default)f)"
)
parser
.
add_argument
(
"--beta_to"
,
default
=
0.0
,
type
=
float
,
help
=
"Where beta ends with, >= beta_from. (default: %(default)f)"
)
args
=
parser
.
parse_args
()
def
tune
():
"""
Tune parameters alpha and beta on one minibatch.
"""
if
not
args
.
alpha_from
<=
args
.
alpha_to
:
raise
ValueError
(
"alpha_from <= alpha_to doesn't satisfy!"
)
if
not
args
.
alpha_stride
>
0
:
raise
ValueError
(
"alpha_stride shouldn't be negative!"
)
if
not
args
.
beta_from
<=
args
.
beta_to
:
raise
ValueError
(
"beta_from <= beta_to doesn't satisfy!"
)
if
not
args
.
beta_stride
>
0
:
raise
ValueError
(
"beta_stride shouldn't be negative!"
)
# initialize data generator
data_generator
=
DataGenerator
(
vocab_filepath
=
args
.
vocab_filepath
,
normalizer_manifest_path
=
args
.
normalizer_manifest_path
,
normalizer_num_samples
=
200
,
max_duration
=
20.0
,
min_duration
=
0.0
,
stride_ms
=
10
,
window_ms
=
20
)
# create network config
dict_size
=
data_generator
.
vocabulary_size
()
vocab_list
=
data_generator
.
vocabulary_list
()
audio_data
=
paddle
.
layer
.
data
(
name
=
"audio_spectrogram"
,
height
=
161
,
width
=
2000
,
type
=
paddle
.
data_type
.
dense_vector
(
322000
))
text_data
=
paddle
.
layer
.
data
(
name
=
"transcript_text"
,
type
=
paddle
.
data_type
.
integer_value_sequence
(
dict_size
))
output_probs
=
deep_speech2
(
audio_data
=
audio_data
,
text_data
=
text_data
,
dict_size
=
dict_size
,
num_conv_layers
=
args
.
num_conv_layers
,
num_rnn_layers
=
args
.
num_rnn_layers
,
rnn_size
=
args
.
rnn_layer_size
,
is_inference
=
True
)
# load parameters
parameters
=
paddle
.
parameters
.
Parameters
.
from_tar
(
gzip
.
open
(
args
.
model_filepath
))
# prepare infer data
feeding
=
data_generator
.
data_name_feeding
()
test_batch_reader
=
data_generator
.
batch_reader_creator
(
manifest_path
=
args
.
decode_manifest_path
,
batch_size
=
args
.
num_samples
,
padding_to
=
2000
,
flatten
=
True
,
sort_by_duration
=
False
,
shuffle
=
False
)
infer_data
=
test_batch_reader
().
next
()
# run inference
infer_results
=
paddle
.
infer
(
output_layer
=
output_probs
,
parameters
=
parameters
,
input
=
infer_data
)
num_steps
=
len
(
infer_results
)
/
len
(
infer_data
)
probs_split
=
[
infer_results
[
i
*
num_steps
:(
i
+
1
)
*
num_steps
]
for
i
in
xrange
(
0
,
len
(
infer_data
))
]
cand_alpha
=
np
.
arange
(
args
.
alpha_from
,
args
.
alpha_to
+
args
.
alpha_stride
,
args
.
alpha_stride
)
cand_beta
=
np
.
arange
(
args
.
beta_from
,
args
.
beta_to
+
args
.
beta_stride
,
args
.
beta_stride
)
params_grid
=
[(
alpha
,
beta
)
for
alpha
in
cand_alpha
for
beta
in
cand_beta
]
## tune parameters in loop
for
(
alpha
,
beta
)
in
params_grid
:
wer_sum
,
wer_counter
=
0
,
0
ext_scorer
=
Scorer
(
alpha
,
beta
,
args
.
language_model_path
)
# beam search decode
if
args
.
decode_method
==
"beam_search"
:
for
i
,
probs
in
enumerate
(
probs_split
):
target_transcription
=
''
.
join
(
[
vocab_list
[
index
]
for
index
in
infer_data
[
i
][
1
]])
beam_search_result
=
ctc_beam_search_decoder
(
probs_seq
=
probs
,
vocabulary
=
vocab_list
,
beam_size
=
args
.
beam_size
,
ext_scoring_func
=
ext_scorer
,
blank_id
=
len
(
vocab_list
))
wer_sum
+=
wer
(
target_transcription
,
beam_search_result
[
0
][
1
])
wer_counter
+=
1
# beam search using multiple processes
elif
args
.
decode_method
==
"beam_search_nproc"
:
beam_search_nproc_results
=
ctc_beam_search_decoder_nproc
(
probs_split
=
probs_split
,
vocabulary
=
vocab_list
,
beam_size
=
args
.
beam_size
,
ext_scoring_func
=
ext_scorer
,
blank_id
=
len
(
vocab_list
),
num_processes
=
1
)
for
i
,
beam_search_result
in
enumerate
(
beam_search_nproc_results
):
target_transcription
=
''
.
join
(
[
vocab_list
[
index
]
for
index
in
infer_data
[
i
][
1
]])
wer_sum
+=
wer
(
target_transcription
,
beam_search_result
[
0
][
1
])
wer_counter
+=
1
else
:
raise
ValueError
(
"Decoding method [%s] is not supported."
%
method
)
print
(
"alpha = %f
\t
beta = %f
\t
WER = %f"
%
(
alpha
,
beta
,
wer_sum
/
wer_counter
))
def
main
():
paddle
.
init
(
use_gpu
=
args
.
use_gpu
,
trainer_count
=
1
)
tune
()
if
__name__
==
'__main__'
:
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录