Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
8e44743e
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
8e44743e
编写于
8月 01, 2017
作者:
X
Xinghai Sun
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Simplify train.py, evaluate.py, infer.py and tune.py by adding DeepSpeech2Model class.
上级
91ff816d
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
415 addition
and
441 deletion
+415
-441
deep_speech_2/evaluate.py
deep_speech_2/evaluate.py
+27
-80
deep_speech_2/infer.py
deep_speech_2/infer.py
+24
-82
deep_speech_2/layer.py
deep_speech_2/layer.py
+155
-0
deep_speech_2/model.py
deep_speech_2/model.py
+137
-128
deep_speech_2/train.py
deep_speech_2/train.py
+35
-86
deep_speech_2/tune.py
deep_speech_2/tune.py
+37
-65
未找到文件。
deep_speech_2/evaluate.py
浏览文件 @
8e44743e
...
...
@@ -4,14 +4,11 @@ from __future__ import division
from
__future__
import
print_function
import
distutils.util
import
sys
import
argparse
import
gzip
import
multiprocessing
import
paddle.v2
as
paddle
from
data_utils.data
import
DataGenerator
from
model
import
deep_speech2
from
decoder
import
*
from
lm.lm_scorer
import
LmScorer
from
model
import
DeepSpeech2Model
from
error_rate
import
wer
import
utils
...
...
@@ -119,37 +116,12 @@ args = parser.parse_args()
def
evaluate
():
"""Evaluate on whole test data for DeepSpeech2."""
# initialize data generator
data_generator
=
DataGenerator
(
vocab_filepath
=
args
.
vocab_filepath
,
mean_std_filepath
=
args
.
mean_std_filepath
,
augmentation_config
=
'{}'
,
specgram_type
=
args
.
specgram_type
,
num_threads
=
args
.
num_threads_data
)
# create network config
# paddle.data_type.dense_array is used for variable batch input.
# The size 161 * 161 is only an placeholder value and the real shape
# of input batch data will be induced during training.
audio_data
=
paddle
.
layer
.
data
(
name
=
"audio_spectrogram"
,
type
=
paddle
.
data_type
.
dense_array
(
161
*
161
))
text_data
=
paddle
.
layer
.
data
(
name
=
"transcript_text"
,
type
=
paddle
.
data_type
.
integer_value_sequence
(
data_generator
.
vocab_size
))
output_probs
=
deep_speech2
(
audio_data
=
audio_data
,
text_data
=
text_data
,
dict_size
=
data_generator
.
vocab_size
,
num_conv_layers
=
args
.
num_conv_layers
,
num_rnn_layers
=
args
.
num_rnn_layers
,
rnn_size
=
args
.
rnn_layer_size
,
is_inference
=
True
)
# load parameters
parameters
=
paddle
.
parameters
.
Parameters
.
from_tar
(
gzip
.
open
(
args
.
model_filepath
))
# prepare infer data
batch_reader
=
data_generator
.
batch_reader_creator
(
manifest_path
=
args
.
decode_manifest_path
,
batch_size
=
args
.
batch_size
,
...
...
@@ -157,59 +129,34 @@ def evaluate():
sortagrad
=
False
,
shuffle_method
=
None
)
# define inferer
inferer
=
paddle
.
inference
.
Inference
(
output_layer
=
output_probs
,
parameters
=
parameters
)
# initialize external scorer for beam search decoding
if
args
.
decode_method
==
'beam_search'
:
ext_scorer
=
LmScorer
(
args
.
alpha
,
args
.
beta
,
args
.
language_model_path
)
ds2_model
=
DeepSpeech2Model
(
vocab_size
=
data_generator
.
vocab_size
,
num_conv_layers
=
args
.
num_conv_layers
,
num_rnn_layers
=
args
.
num_rnn_layers
,
rnn_layer_size
=
args
.
rnn_layer_size
,
pretrained_model_path
=
args
.
model_filepath
)
wer_
counter
,
wer_sum
=
0
,
0.
0
wer_
sum
,
num_ins
=
0.0
,
0
for
infer_data
in
batch_reader
():
# run inference
infer_results
=
inferer
.
infer
(
input
=
infer_data
)
num_steps
=
len
(
infer_results
)
//
len
(
infer_data
)
probs_split
=
[
infer_results
[
i
*
num_steps
:(
i
+
1
)
*
num_steps
]
for
i
in
xrange
(
0
,
len
(
infer_data
))
result_transcripts
=
ds2_model
.
infer_batch
(
infer_data
=
infer_data
,
decode_method
=
args
.
decode_method
,
beam_alpha
=
args
.
alpha
,
beam_beta
=
args
.
beta
,
beam_size
=
args
.
beam_size
,
cutoff_prob
=
args
.
cutoff_prob
,
vocab_list
=
data_generator
.
vocab_list
,
language_model_path
=
args
.
language_model_path
,
num_processes
=
args
.
num_processes_beam_search
)
target_transcripts
=
[
''
.
join
([
data_generator
.
vocab_list
[
token
]
for
token
in
transcript
])
for
_
,
transcript
in
infer_data
]
# target transcription
target_transcription
=
[
''
.
join
([
data_generator
.
vocab_list
[
index
]
for
index
in
infer_data
[
i
][
1
]
])
for
i
,
probs
in
enumerate
(
probs_split
)
]
# decode and print
# best path decode
if
args
.
decode_method
==
"best_path"
:
for
i
,
probs
in
enumerate
(
probs_split
):
output_transcription
=
ctc_best_path_decoder
(
probs_seq
=
probs
,
vocabulary
=
data_generator
.
vocab_list
)
wer_sum
+=
wer
(
target_transcription
[
i
],
output_transcription
)
wer_counter
+=
1
# beam search decode
elif
args
.
decode_method
==
"beam_search"
:
# beam search using multiple processes
beam_search_results
=
ctc_beam_search_decoder_batch
(
probs_split
=
probs_split
,
vocabulary
=
data_generator
.
vocab_list
,
beam_size
=
args
.
beam_size
,
blank_id
=
len
(
data_generator
.
vocab_list
),
num_processes
=
args
.
num_processes_beam_search
,
ext_scoring_func
=
ext_scorer
,
cutoff_prob
=
args
.
cutoff_prob
)
for
i
,
beam_search_result
in
enumerate
(
beam_search_results
):
wer_sum
+=
wer
(
target_transcription
[
i
],
beam_search_result
[
0
][
1
])
wer_counter
+=
1
else
:
raise
ValueError
(
"Decoding method [%s] is not supported."
%
decode_method
)
print
(
"WER (%d/?) = %f"
%
(
wer_counter
,
wer_sum
/
wer_counter
))
print
(
"Final WER (%d/%d) = %f"
%
(
wer_counter
,
wer_counter
,
wer_sum
/
wer_counter
))
for
target
,
result
in
zip
(
target_transcripts
,
result_transcripts
):
wer_sum
+=
wer
(
target
,
result
)
num_ins
+=
1
print
(
"WER (%d/?) = %f"
%
(
num_ins
,
wer_sum
/
num_ins
))
print
(
"Final WER (%d/%d) = %f"
%
(
num_ins
,
num_ins
,
wer_sum
/
num_ins
))
def
main
():
...
...
deep_speech_2/infer.py
浏览文件 @
8e44743e
...
...
@@ -4,14 +4,11 @@ from __future__ import division
from
__future__
import
print_function
import
argparse
import
gzip
import
distutils.util
import
multiprocessing
import
paddle.v2
as
paddle
from
data_utils.data
import
DataGenerator
from
model
import
deep_speech2
from
decoder
import
*
from
lm.lm_scorer
import
LmScorer
from
model
import
DeepSpeech2Model
from
error_rate
import
wer
import
utils
...
...
@@ -124,37 +121,12 @@ args = parser.parse_args()
def
infer
():
"""Inference for DeepSpeech2."""
# initialize data generator
data_generator
=
DataGenerator
(
vocab_filepath
=
args
.
vocab_filepath
,
mean_std_filepath
=
args
.
mean_std_filepath
,
augmentation_config
=
'{}'
,
specgram_type
=
args
.
specgram_type
,
num_threads
=
args
.
num_threads_data
)
# create network config
# paddle.data_type.dense_array is used for variable batch input.
# The size 161 * 161 is only an placeholder value and the real shape
# of input batch data will be induced during training.
audio_data
=
paddle
.
layer
.
data
(
name
=
"audio_spectrogram"
,
type
=
paddle
.
data_type
.
dense_array
(
161
*
161
))
text_data
=
paddle
.
layer
.
data
(
name
=
"transcript_text"
,
type
=
paddle
.
data_type
.
integer_value_sequence
(
data_generator
.
vocab_size
))
output_probs
=
deep_speech2
(
audio_data
=
audio_data
,
text_data
=
text_data
,
dict_size
=
data_generator
.
vocab_size
,
num_conv_layers
=
args
.
num_conv_layers
,
num_rnn_layers
=
args
.
num_rnn_layers
,
rnn_size
=
args
.
rnn_layer_size
,
is_inference
=
True
)
# load parameters
parameters
=
paddle
.
parameters
.
Parameters
.
from_tar
(
gzip
.
open
(
args
.
model_filepath
))
# prepare infer data
batch_reader
=
data_generator
.
batch_reader_creator
(
manifest_path
=
args
.
decode_manifest_path
,
batch_size
=
args
.
num_samples
,
...
...
@@ -163,61 +135,31 @@ def infer():
shuffle_method
=
None
)
infer_data
=
batch_reader
().
next
()
# run inference
infer_results
=
paddle
.
infer
(
output_layer
=
output_probs
,
parameters
=
parameters
,
input
=
infer_data
)
num_steps
=
len
(
infer_results
)
//
len
(
infer_data
)
probs_split
=
[
infer_results
[
i
*
num_steps
:(
i
+
1
)
*
num_steps
]
for
i
in
xrange
(
len
(
infer_data
))
]
ds2_model
=
DeepSpeech2Model
(
vocab_size
=
data_generator
.
vocab_size
,
num_conv_layers
=
args
.
num_conv_layers
,
num_rnn_layers
=
args
.
num_rnn_layers
,
rnn_layer_size
=
args
.
rnn_layer_size
,
pretrained_model_path
=
args
.
model_filepath
)
result_transcripts
=
ds2_model
.
infer_batch
(
infer_data
=
infer_data
,
decode_method
=
args
.
decode_method
,
beam_alpha
=
args
.
alpha
,
beam_beta
=
args
.
beta
,
beam_size
=
args
.
beam_size
,
cutoff_prob
=
args
.
cutoff_prob
,
vocab_list
=
data_generator
.
vocab_list
,
language_model_path
=
args
.
language_model_path
,
num_processes
=
args
.
num_processes_beam_search
)
# targe transcription
target_transcription
=
[
''
.
join
(
[
data_generator
.
vocab_list
[
index
]
for
index
in
infer_data
[
i
][
1
]])
for
i
,
probs
in
enumerate
(
probs_split
)
target_transcripts
=
[
''
.
join
([
data_generator
.
vocab_list
[
token
]
for
token
in
transcript
])
for
_
,
transcript
in
infer_data
]
## decode and print
# best path decode
wer_sum
,
wer_counter
=
0
,
0
if
args
.
decode_method
==
"best_path"
:
for
i
,
probs
in
enumerate
(
probs_split
):
best_path_transcription
=
ctc_best_path_decoder
(
probs_seq
=
probs
,
vocabulary
=
data_generator
.
vocab_list
)
print
(
"
\n
Target Transcription: %s
\n
Output Transcription: %s"
%
(
target_transcription
[
i
],
best_path_transcription
))
wer_cur
=
wer
(
target_transcription
[
i
],
best_path_transcription
)
wer_sum
+=
wer_cur
wer_counter
+=
1
print
(
"cur wer = %f, average wer = %f"
%
(
wer_cur
,
wer_sum
/
wer_counter
))
# beam search decode
elif
args
.
decode_method
==
"beam_search"
:
ext_scorer
=
LmScorer
(
args
.
alpha
,
args
.
beta
,
args
.
language_model_path
)
beam_search_batch_results
=
ctc_beam_search_decoder_batch
(
probs_split
=
probs_split
,
vocabulary
=
data_generator
.
vocab_list
,
beam_size
=
args
.
beam_size
,
blank_id
=
len
(
data_generator
.
vocab_list
),
num_processes
=
args
.
num_processes_beam_search
,
cutoff_prob
=
args
.
cutoff_prob
,
ext_scoring_func
=
ext_scorer
,
)
for
i
,
beam_search_result
in
enumerate
(
beam_search_batch_results
):
print
(
"
\n
Target Transcription:
\t
%s"
%
target_transcription
[
i
])
for
index
in
xrange
(
args
.
num_results_per_sample
):
result
=
beam_search_result
[
index
]
#output: index, log prob, beam result
print
(
"Beam %d: %f
\t
%s"
%
(
index
,
result
[
0
],
result
[
1
]))
wer_cur
=
wer
(
target_transcription
[
i
],
beam_search_result
[
0
][
1
])
wer_sum
+=
wer_cur
wer_counter
+=
1
print
(
"Current WER = %f , Average WER = %f"
%
(
wer_cur
,
wer_sum
/
wer_counter
))
else
:
raise
ValueError
(
"Decoding method [%s] is not supported."
%
decode_method
)
for
target
,
result
in
zip
(
target_transcripts
,
result_transcripts
):
print
(
"
\n
Target Transcription: %s
\n
Output Transcription: %s"
%
(
target
,
result
))
print
(
"Current wer = %f"
%
wer
(
target
,
result
))
def
main
():
...
...
deep_speech_2/layer.py
0 → 100644
浏览文件 @
8e44743e
"""Contains DeepSpeech2 layers."""
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
paddle.v2
as
paddle
DISABLE_CUDNN_BATCH_NORM
=
True
def
conv_bn_layer
(
input
,
filter_size
,
num_channels_in
,
num_channels_out
,
stride
,
padding
,
act
):
"""
Convolution layer with batch normalization.
"""
conv_layer
=
paddle
.
layer
.
img_conv
(
input
=
input
,
filter_size
=
filter_size
,
num_channels
=
num_channels_in
,
num_filters
=
num_channels_out
,
stride
=
stride
,
padding
=
padding
,
act
=
paddle
.
activation
.
Linear
(),
bias_attr
=
False
)
if
DISABLE_CUDNN_BATCH_NORM
:
# temopary patch, need to be removed.
return
paddle
.
layer
.
batch_norm
(
input
=
conv_layer
,
act
=
act
,
batch_norm_type
=
"batch_norm"
)
else
:
return
paddle
.
layer
.
batch_norm
(
input
=
conv_layer
,
act
=
act
)
def
bidirectional_simple_rnn_bn_layer
(
name
,
input
,
size
,
act
):
"""
Bidirectonal simple rnn layer with sequence-wise batch normalization.
The batch normalization is only performed on input-state weights.
"""
# input-hidden weights shared across bi-direcitonal rnn.
input_proj
=
paddle
.
layer
.
fc
(
input
=
input
,
size
=
size
,
act
=
paddle
.
activation
.
Linear
(),
bias_attr
=
False
)
# batch norm is only performed on input-state projection
if
DISABLE_CUDNN_BATCH_NORM
:
# temopary patch, need to be removed.
input_proj_bn
=
paddle
.
layer
.
batch_norm
(
input
=
input_proj
,
act
=
paddle
.
activation
.
Linear
(),
batch_norm_type
=
"batch_norm"
)
else
:
input_proj_bn
=
paddle
.
layer
.
batch_norm
(
input
=
input_proj
,
act
=
paddle
.
activation
.
Linear
())
# forward and backward in time
forward_simple_rnn
=
paddle
.
layer
.
recurrent
(
input
=
input_proj_bn
,
act
=
act
,
reverse
=
False
)
backward_simple_rnn
=
paddle
.
layer
.
recurrent
(
input
=
input_proj_bn
,
act
=
act
,
reverse
=
True
)
return
paddle
.
layer
.
concat
(
input
=
[
forward_simple_rnn
,
backward_simple_rnn
])
def
conv_group
(
input
,
num_stacks
):
"""
Convolution group with several stacking convolution layers.
"""
conv
=
conv_bn_layer
(
input
=
input
,
filter_size
=
(
11
,
41
),
num_channels_in
=
1
,
num_channels_out
=
32
,
stride
=
(
3
,
2
),
padding
=
(
5
,
20
),
act
=
paddle
.
activation
.
BRelu
())
for
i
in
xrange
(
num_stacks
-
1
):
conv
=
conv_bn_layer
(
input
=
conv
,
filter_size
=
(
11
,
21
),
num_channels_in
=
32
,
num_channels_out
=
32
,
stride
=
(
1
,
2
),
padding
=
(
5
,
10
),
act
=
paddle
.
activation
.
BRelu
())
output_num_channels
=
32
output_height
=
160
//
pow
(
2
,
num_stacks
)
+
1
return
conv
,
output_num_channels
,
output_height
def
rnn_group
(
input
,
size
,
num_stacks
):
"""
RNN group with several stacking RNN layers.
"""
output
=
input
for
i
in
xrange
(
num_stacks
):
output
=
bidirectional_simple_rnn_bn_layer
(
name
=
str
(
i
),
input
=
output
,
size
=
size
,
act
=
paddle
.
activation
.
BRelu
())
return
output
def
deep_speech2
(
audio_data
,
text_data
,
dict_size
,
num_conv_layers
=
2
,
num_rnn_layers
=
3
,
rnn_size
=
256
):
"""
The whole DeepSpeech2 model structure (a simplified version).
:param audio_data: Audio spectrogram data layer.
:type audio_data: LayerOutput
:param text_data: Transcription text data layer.
:type text_data: LayerOutput
:param dict_size: Dictionary size for tokenized transcription.
:type dict_size: int
:param num_conv_layers: Number of stacking convolution layers.
:type num_conv_layers: int
:param num_rnn_layers: Number of stacking RNN layers.
:type num_rnn_layers: int
:param rnn_size: RNN layer size (number of RNN cells).
:type rnn_size: int
:param is_inference: False in the training mode, and True in the
inferene mode.
:type is_inference: bool
:return: If is_inference set False, return a ctc cost layer;
if is_inference set True, return a sequence layer of output
probability distribution.
:rtype: tuple of LayerOutput
"""
# convolution group
conv_group_output
,
conv_group_num_channels
,
conv_group_height
=
conv_group
(
input
=
audio_data
,
num_stacks
=
num_conv_layers
)
# convert data form convolution feature map to sequence of vectors
conv2seq
=
paddle
.
layer
.
block_expand
(
input
=
conv_group_output
,
num_channels
=
conv_group_num_channels
,
stride_x
=
1
,
stride_y
=
1
,
block_x
=
1
,
block_y
=
conv_group_height
)
# rnn group
rnn_group_output
=
rnn_group
(
input
=
conv2seq
,
size
=
rnn_size
,
num_stacks
=
num_rnn_layers
)
fc
=
paddle
.
layer
.
fc
(
input
=
rnn_group_output
,
size
=
dict_size
+
1
,
act
=
paddle
.
activation
.
Linear
(),
bias_attr
=
True
)
# probability distribution with softmax
log_probs
=
paddle
.
layer
.
mixed
(
input
=
paddle
.
layer
.
identity_projection
(
input
=
fc
),
act
=
paddle
.
activation
.
Softmax
())
# ctc cost
ctc_loss
=
paddle
.
layer
.
warp_ctc
(
input
=
fc
,
label
=
text_data
,
size
=
dict_size
+
1
,
blank
=
dict_size
,
norm_by_times
=
True
)
return
log_probs
,
ctc_loss
deep_speech_2/model.py
浏览文件 @
8e44743e
...
...
@@ -3,141 +3,150 @@ from __future__ import absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
sys
import
os
import
time
import
gzip
from
decoder
import
*
from
lm.lm_scorer
import
LmScorer
import
paddle.v2
as
paddle
from
layer
import
*
def
conv_bn_layer
(
input
,
filter_size
,
num_channels_in
,
num_channels_out
,
stride
,
padding
,
act
):
"""
Convolution layer with batch normalization.
"""
conv_layer
=
paddle
.
layer
.
img_conv
(
input
=
input
,
filter_size
=
filter_size
,
num_channels
=
num_channels_in
,
num_filters
=
num_channels_out
,
stride
=
stride
,
padding
=
padding
,
act
=
paddle
.
activation
.
Linear
(),
bias_attr
=
False
)
return
paddle
.
layer
.
batch_norm
(
input
=
conv_layer
,
act
=
act
)
class
DeepSpeech2Model
(
object
):
def
__init__
(
self
,
vocab_size
,
num_conv_layers
,
num_rnn_layers
,
rnn_layer_size
,
pretrained_model_path
):
self
.
_create_network
(
vocab_size
,
num_conv_layers
,
num_rnn_layers
,
rnn_layer_size
)
self
.
_create_parameters
(
pretrained_model_path
)
self
.
_inferer
=
None
self
.
_ext_scorer
=
None
def
train
(
self
,
train_batch_reader
,
dev_batch_reader
,
feeding_dict
,
learning_rate
,
gradient_clipping
,
num_passes
,
num_iterations_print
=
100
,
output_model_dir
=
'checkpoints'
):
# prepare optimizer and trainer
optimizer
=
paddle
.
optimizer
.
Adam
(
learning_rate
=
learning_rate
,
gradient_clipping_threshold
=
gradient_clipping
)
trainer
=
paddle
.
trainer
.
SGD
(
cost
=
self
.
_loss
,
parameters
=
self
.
_parameters
,
update_equation
=
optimizer
)
def
bidirectional_simple_rnn_bn_layer
(
name
,
input
,
size
,
act
):
"""
Bidirectonal simple rnn layer with sequence-wise batch normalization.
The batch normalization is only performed on input-state weights.
"""
# input-hidden weights shared across bi-direcitonal rnn.
input_proj
=
paddle
.
layer
.
fc
(
input
=
input
,
size
=
size
,
act
=
paddle
.
activation
.
Linear
(),
bias_attr
=
False
)
# batch norm is only performed on input-state projection
input_proj_bn
=
paddle
.
layer
.
batch_norm
(
input
=
input_proj
,
act
=
paddle
.
activation
.
Linear
())
# forward and backward in time
forward_simple_rnn
=
paddle
.
layer
.
recurrent
(
input
=
input_proj_bn
,
act
=
act
,
reverse
=
False
)
backward_simple_rnn
=
paddle
.
layer
.
recurrent
(
input
=
input_proj_bn
,
act
=
act
,
reverse
=
True
)
return
paddle
.
layer
.
concat
(
input
=
[
forward_simple_rnn
,
backward_simple_rnn
])
# create event handler
def
event_handler
(
event
):
global
start_time
,
cost_sum
,
cost_counter
if
isinstance
(
event
,
paddle
.
event
.
EndIteration
):
cost_sum
+=
event
.
cost
cost_counter
+=
1
if
(
event
.
batch_id
+
1
)
%
num_iterations_print
==
0
:
output_model_path
=
os
.
path
.
join
(
output_model_dir
,
"params.latest.tar.gz"
)
with
gzip
.
open
(
output_model_path
,
'w'
)
as
f
:
self
.
_parameters
.
to_tar
(
f
)
print
(
"
\n
Pass: %d, Batch: %d, TrainCost: %f"
%
(
event
.
pass_id
,
event
.
batch_id
+
1
,
cost_sum
/
cost_counter
))
cost_sum
,
cost_counter
=
0.0
,
0
else
:
sys
.
stdout
.
write
(
'.'
)
sys
.
stdout
.
flush
()
if
isinstance
(
event
,
paddle
.
event
.
BeginPass
):
start_time
=
time
.
time
()
cost_sum
,
cost_counter
=
0.0
,
0
if
isinstance
(
event
,
paddle
.
event
.
EndPass
):
result
=
trainer
.
test
(
reader
=
dev_batch_reader
,
feeding
=
feeding_dict
)
output_model_path
=
os
.
path
.
join
(
output_model_dir
,
"params.pass-%d.tar.gz"
%
event
.
pass_id
)
with
gzip
.
open
(
output_model_path
,
'w'
)
as
f
:
self
.
_parameters
.
to_tar
(
f
)
print
(
"
\n
------- Time: %d sec, Pass: %d, ValidationCost: %s"
%
(
time
.
time
()
-
start_time
,
event
.
pass_id
,
result
.
cost
))
# run train
trainer
.
train
(
reader
=
train_batch_reader
,
event_handler
=
event_handler
,
num_passes
=
num_passes
,
feeding
=
feeding_dict
)
def
conv_group
(
input
,
num_stacks
):
"""
Convolution group with several stacking convolution layers.
"""
conv
=
conv_bn_layer
(
input
=
input
,
filter_size
=
(
11
,
41
),
num_channels_in
=
1
,
num_channels_out
=
32
,
stride
=
(
3
,
2
),
padding
=
(
5
,
20
),
act
=
paddle
.
activation
.
BRelu
())
for
i
in
xrange
(
num_stacks
-
1
):
conv
=
conv_bn_layer
(
input
=
conv
,
filter_size
=
(
11
,
21
),
num_channels_in
=
32
,
num_channels_out
=
32
,
stride
=
(
1
,
2
),
padding
=
(
5
,
10
),
act
=
paddle
.
activation
.
BRelu
())
output_num_channels
=
32
output_height
=
160
//
pow
(
2
,
num_stacks
)
+
1
return
conv
,
output_num_channels
,
output_height
def
infer_batch
(
self
,
infer_data
,
decode_method
,
beam_alpha
,
beam_beta
,
beam_size
,
cutoff_prob
,
vocab_list
,
language_model_path
,
num_processes
):
# define inferer
if
self
.
_inferer
==
None
:
self
.
_inferer
=
paddle
.
inference
.
Inference
(
output_layer
=
self
.
_log_probs
,
parameters
=
self
.
_parameters
)
# run inference
infer_results
=
self
.
_inferer
.
infer
(
input
=
infer_data
)
num_steps
=
len
(
infer_results
)
//
len
(
infer_data
)
probs_split
=
[
infer_results
[
i
*
num_steps
:(
i
+
1
)
*
num_steps
]
for
i
in
xrange
(
0
,
len
(
infer_data
))
]
# run decoder
results
=
[]
if
decode_method
==
"best_path"
:
# best path decode
for
i
,
probs
in
enumerate
(
probs_split
):
output_transcription
=
ctc_best_path_decoder
(
probs_seq
=
probs
,
vocabulary
=
data_generator
.
vocab_list
)
results
.
append
(
output_transcription
)
elif
decode_method
==
"beam_search"
:
# initialize external scorer
if
self
.
_ext_scorer
==
None
:
self
.
_ext_scorer
=
LmScorer
(
beam_alpha
,
beam_beta
,
language_model_path
)
self
.
_loaded_lm_path
=
language_model_path
else
:
self
.
_ext_scorer
.
reset_params
(
beam_alpha
,
beam_beta
)
assert
self
.
_loaded_lm_path
==
language_model_path
# beam search decode
beam_search_results
=
ctc_beam_search_decoder_batch
(
probs_split
=
probs_split
,
vocabulary
=
vocab_list
,
beam_size
=
beam_size
,
blank_id
=
len
(
vocab_list
),
num_processes
=
num_processes
,
ext_scoring_func
=
self
.
_ext_scorer
,
cutoff_prob
=
cutoff_prob
)
results
=
[
result
[
0
][
1
]
for
result
in
beam_search_results
]
else
:
raise
ValueError
(
"Decoding method [%s] is not supported."
%
decode_method
)
return
results
def
rnn_group
(
input
,
size
,
num_stacks
):
"""
RNN group with several stacking RNN layers.
"""
output
=
input
for
i
in
xrange
(
num_stacks
):
output
=
bidirectional_simple_rnn_bn_layer
(
name
=
str
(
i
),
input
=
output
,
size
=
size
,
act
=
paddle
.
activation
.
BRelu
())
return
output
def
_create_parameters
(
self
,
model_path
=
None
):
if
model_path
is
None
:
self
.
_parameters
=
paddle
.
parameters
.
create
(
self
.
_loss
)
else
:
self
.
_parameters
=
paddle
.
parameters
.
Parameters
.
from_tar
(
gzip
.
open
(
model_path
))
def
deep_speech2
(
audio_data
,
text_data
,
dict_size
,
num_conv_layers
=
2
,
num_rnn_layers
=
3
,
rnn_size
=
256
,
is_inference
=
False
):
"""
The whole DeepSpeech2 model structure (a simplified version).
:param audio_data: Audio spectrogram data layer.
:type audio_data: LayerOutput
:param text_data: Transcription text data layer.
:type text_data: LayerOutput
:param dict_size: Dictionary size for tokenized transcription.
:type dict_size: int
:param num_conv_layers: Number of stacking convolution layers.
:type num_conv_layers: int
:param num_rnn_layers: Number of stacking RNN layers.
:type num_rnn_layers: int
:param rnn_size: RNN layer size (number of RNN cells).
:type rnn_size: int
:param is_inference: False in the training mode, and True in the
inferene mode.
:type is_inference: bool
:return: If is_inference set False, return a ctc cost layer;
if is_inference set True, return a sequence layer of output
probability distribution.
:rtype: tuple of LayerOutput
"""
# convolution group
conv_group_output
,
conv_group_num_channels
,
conv_group_height
=
conv_group
(
input
=
audio_data
,
num_stacks
=
num_conv_layers
)
# convert data form convolution feature map to sequence of vectors
conv2seq
=
paddle
.
layer
.
block_expand
(
input
=
conv_group_output
,
num_channels
=
conv_group_num_channels
,
stride_x
=
1
,
stride_y
=
1
,
block_x
=
1
,
block_y
=
conv_group_height
)
# rnn group
rnn_group_output
=
rnn_group
(
input
=
conv2seq
,
size
=
rnn_size
,
num_stacks
=
num_rnn_layers
)
fc
=
paddle
.
layer
.
fc
(
input
=
rnn_group_output
,
size
=
dict_size
+
1
,
act
=
paddle
.
activation
.
Linear
(),
bias_attr
=
True
)
if
is_inference
:
# probability distribution with softmax
return
paddle
.
layer
.
mixed
(
input
=
paddle
.
layer
.
identity_projection
(
input
=
fc
),
act
=
paddle
.
activation
.
Softmax
())
else
:
# ctc cost
return
paddle
.
layer
.
warp_ctc
(
input
=
fc
,
label
=
text_data
,
size
=
dict_size
+
1
,
blank
=
dict_size
,
norm_by_times
=
True
)
def
_create_network
(
self
,
vocab_size
,
num_conv_layers
,
num_rnn_layers
,
rnn_layer_size
):
# paddle.data_type.dense_array is used for variable batch input.
# The size 161 * 161 is only an placeholder value and the real shape
# of input batch data will be induced during training.
audio_data
=
paddle
.
layer
.
data
(
name
=
"audio_spectrogram"
,
type
=
paddle
.
data_type
.
dense_array
(
161
*
161
))
text_data
=
paddle
.
layer
.
data
(
name
=
"transcript_text"
,
type
=
paddle
.
data_type
.
integer_value_sequence
(
vocab_size
))
self
.
_log_probs
,
self
.
_loss
=
deep_speech2
(
audio_data
=
audio_data
,
text_data
=
text_data
,
dict_size
=
vocab_size
,
num_conv_layers
=
num_conv_layers
,
num_rnn_layers
=
num_rnn_layers
,
rnn_size
=
rnn_layer_size
)
deep_speech_2/train.py
浏览文件 @
8e44743e
...
...
@@ -3,15 +3,11 @@ from __future__ import absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
sys
import
os
import
argparse
import
gzip
import
time
import
distutils.util
import
multiprocessing
import
paddle.v2
as
paddle
from
model
import
deep_speech2
from
model
import
DeepSpeech2Model
from
data_utils.data
import
DataGenerator
import
utils
...
...
@@ -23,6 +19,12 @@ parser.add_argument(
default
=
200
,
type
=
int
,
help
=
"Training pass number. (default: %(default)s)"
)
parser
.
add_argument
(
"--num_iterations_print"
,
default
=
100
,
type
=
int
,
help
=
"Number of iterations for every train cost printing. "
"(default: %(default)s)"
)
parser
.
add_argument
(
"--num_conv_layers"
,
default
=
2
,
...
...
@@ -127,100 +129,47 @@ args = parser.parse_args()
def
train
():
"""DeepSpeech2 training."""
# initialize data generator
def
data_generator
():
return
DataGenerator
(
vocab_filepath
=
args
.
vocab_filepath
,
mean_std_filepath
=
args
.
mean_std_filepath
,
augmentation_config
=
args
.
augmentation_config
,
max_duration
=
args
.
max_duration
,
min_duration
=
args
.
min_duration
,
specgram_type
=
args
.
specgram_type
,
num_threads
=
args
.
num_threads_data
)
train_generator
=
data_generator
()
test_generator
=
data_generator
()
# create network config
# paddle.data_type.dense_array is used for variable batch input.
# The size 161 * 161 is only an placeholder value and the real shape
# of input batch data will be induced during training.
audio_data
=
paddle
.
layer
.
data
(
name
=
"audio_spectrogram"
,
type
=
paddle
.
data_type
.
dense_array
(
161
*
161
))
text_data
=
paddle
.
layer
.
data
(
name
=
"transcript_text"
,
type
=
paddle
.
data_type
.
integer_value_sequence
(
train_generator
.
vocab_size
))
cost
=
deep_speech2
(
audio_data
=
audio_data
,
text_data
=
text_data
,
dict_size
=
train_generator
.
vocab_size
,
num_conv_layers
=
args
.
num_conv_layers
,
num_rnn_layers
=
args
.
num_rnn_layers
,
rnn_size
=
args
.
rnn_layer_size
,
is_inference
=
False
)
# create/load parameters and optimizer
if
args
.
init_model_path
is
None
:
parameters
=
paddle
.
parameters
.
create
(
cost
)
else
:
if
not
os
.
path
.
isfile
(
args
.
init_model_path
):
raise
IOError
(
"Invalid model!"
)
parameters
=
paddle
.
parameters
.
Parameters
.
from_tar
(
gzip
.
open
(
args
.
init_model_path
))
optimizer
=
paddle
.
optimizer
.
Adam
(
learning_rate
=
args
.
adam_learning_rate
,
gradient_clipping_threshold
=
400
)
trainer
=
paddle
.
trainer
.
SGD
(
cost
=
cost
,
parameters
=
parameters
,
update_equation
=
optimizer
)
# prepare data reader
train_generator
=
DataGenerator
(
vocab_filepath
=
args
.
vocab_filepath
,
mean_std_filepath
=
args
.
mean_std_filepath
,
augmentation_config
=
args
.
augmentation_config
,
max_duration
=
args
.
max_duration
,
min_duration
=
args
.
min_duration
,
specgram_type
=
args
.
specgram_type
,
num_threads
=
args
.
num_threads_data
)
dev_generator
=
DataGenerator
(
vocab_filepath
=
args
.
vocab_filepath
,
mean_std_filepath
=
args
.
mean_std_filepath
,
augmentation_config
=
"{}"
,
specgram_type
=
args
.
specgram_type
,
num_threads
=
args
.
num_threads_data
)
train_batch_reader
=
train_generator
.
batch_reader_creator
(
manifest_path
=
args
.
train_manifest_path
,
batch_size
=
args
.
batch_size
,
min_batch_size
=
args
.
trainer_count
,
sortagrad
=
args
.
use_sortagrad
if
args
.
init_model_path
is
None
else
False
,
shuffle_method
=
args
.
shuffle_method
)
test_batch_reader
=
test
_generator
.
batch_reader_creator
(
dev_batch_reader
=
dev
_generator
.
batch_reader_creator
(
manifest_path
=
args
.
dev_manifest_path
,
batch_size
=
args
.
batch_size
,
min_batch_size
=
1
,
# must be 1, but will have errors.
sortagrad
=
False
,
shuffle_method
=
None
)
# create event handler
def
event_handler
(
event
):
global
start_time
,
cost_sum
,
cost_counter
if
isinstance
(
event
,
paddle
.
event
.
EndIteration
):
cost_sum
+=
event
.
cost
cost_counter
+=
1
if
(
event
.
batch_id
+
1
)
%
100
==
0
:
print
(
"
\n
Pass: %d, Batch: %d, TrainCost: %f"
%
(
event
.
pass_id
,
event
.
batch_id
+
1
,
cost_sum
/
cost_counter
))
cost_sum
,
cost_counter
=
0.0
,
0
with
gzip
.
open
(
"checkpoints/params.latest.tar.gz"
,
'w'
)
as
f
:
parameters
.
to_tar
(
f
)
else
:
sys
.
stdout
.
write
(
'.'
)
sys
.
stdout
.
flush
()
if
isinstance
(
event
,
paddle
.
event
.
BeginPass
):
start_time
=
time
.
time
()
cost_sum
,
cost_counter
=
0.0
,
0
if
isinstance
(
event
,
paddle
.
event
.
EndPass
):
result
=
trainer
.
test
(
reader
=
test_batch_reader
,
feeding
=
test_generator
.
feeding
)
print
(
"
\n
------- Time: %d sec, Pass: %d, ValidationCost: %s"
%
(
time
.
time
()
-
start_time
,
event
.
pass_id
,
result
.
cost
))
with
gzip
.
open
(
"checkpoints/params.pass-%d.tar.gz"
%
event
.
pass_id
,
'w'
)
as
f
:
parameters
.
to_tar
(
f
)
# run train
trainer
.
train
(
reader
=
train_batch_reader
,
event_handler
=
event_handler
,
ds2_model
=
DeepSpeech2Model
(
vocab_size
=
train_generator
.
vocab_size
,
num_conv_layers
=
args
.
num_conv_layers
,
num_rnn_layers
=
args
.
num_rnn_layers
,
rnn_layer_size
=
args
.
rnn_layer_size
,
pretrained_model_path
=
args
.
init_model_path
)
ds2_model
.
train
(
train_batch_reader
=
train_batch_reader
,
dev_batch_reader
=
dev_batch_reader
,
feeding_dict
=
train_generator
.
feeding
,
learning_rate
=
args
.
adam_learning_rate
,
gradient_clipping
=
400
,
num_passes
=
args
.
num_passes
,
feeding
=
train_generator
.
feeding
)
num_iterations_print
=
args
.
num_iterations_print
)
def
main
():
...
...
deep_speech_2/tune.py
浏览文件 @
8e44743e
...
...
@@ -3,14 +3,13 @@ from __future__ import absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
numpy
as
np
import
distutils.util
import
argparse
import
gzip
import
multiprocessing
import
paddle.v2
as
paddle
from
data_utils.data
import
DataGenerator
from
model
import
deep_speech2
from
decoder
import
*
from
lm.lm_scorer
import
LmScorer
from
model
import
DeepSpeech2Model
from
error_rate
import
wer
import
utils
...
...
@@ -40,6 +39,11 @@ parser.add_argument(
default
=
True
,
type
=
distutils
.
util
.
strtobool
,
help
=
"Use gpu or not. (default: %(default)s)"
)
parser
.
add_argument
(
"--trainer_count"
,
default
=
8
,
type
=
int
,
help
=
"Trainer number. (default: %(default)s)"
)
parser
.
add_argument
(
"--num_threads_data"
,
default
=
multiprocessing
.
cpu_count
(),
...
...
@@ -62,10 +66,10 @@ parser.add_argument(
type
=
str
,
help
=
"Manifest path for normalizer. (default: %(default)s)"
)
parser
.
add_argument
(
"--
decod
e_manifest_path"
,
"--
tun
e_manifest_path"
,
default
=
'datasets/manifest.test'
,
type
=
str
,
help
=
"Manifest path for
decod
ing. (default: %(default)s)"
)
help
=
"Manifest path for
tun
ing. (default: %(default)s)"
)
parser
.
add_argument
(
"--model_filepath"
,
default
=
'checkpoints/params.latest.tar.gz'
,
...
...
@@ -127,96 +131,64 @@ args = parser.parse_args()
def
tune
():
"""Tune parameters alpha and beta on one minibatch."""
if
not
args
.
num_alphas
>=
0
:
raise
ValueError
(
"num_alphas must be non-negative!"
)
if
not
args
.
num_betas
>=
0
:
raise
ValueError
(
"num_betas must be non-negative!"
)
# initialize data generator
data_generator
=
DataGenerator
(
vocab_filepath
=
args
.
vocab_filepath
,
mean_std_filepath
=
args
.
mean_std_filepath
,
augmentation_config
=
'{}'
,
specgram_type
=
args
.
specgram_type
,
num_threads
=
args
.
num_threads_data
)
# create network config
# paddle.data_type.dense_array is used for variable batch input.
# The size 161 * 161 is only an placeholder value and the real shape
# of input batch data will be induced during training.
audio_data
=
paddle
.
layer
.
data
(
name
=
"audio_spectrogram"
,
type
=
paddle
.
data_type
.
dense_array
(
161
*
161
))
text_data
=
paddle
.
layer
.
data
(
name
=
"transcript_text"
,
type
=
paddle
.
data_type
.
integer_value_sequence
(
data_generator
.
vocab_size
))
output_probs
=
deep_speech2
(
audio_data
=
audio_data
,
text_data
=
text_data
,
dict_size
=
data_generator
.
vocab_size
,
num_conv_layers
=
args
.
num_conv_layers
,
num_rnn_layers
=
args
.
num_rnn_layers
,
rnn_size
=
args
.
rnn_layer_size
,
is_inference
=
True
)
# load parameters
parameters
=
paddle
.
parameters
.
Parameters
.
from_tar
(
gzip
.
open
(
args
.
model_filepath
))
# prepare infer data
batch_reader
=
data_generator
.
batch_reader_creator
(
manifest_path
=
args
.
decod
e_manifest_path
,
manifest_path
=
args
.
tun
e_manifest_path
,
batch_size
=
args
.
num_samples
,
sortagrad
=
False
,
shuffle_method
=
None
)
# get one batch data for tuning
infer_data
=
batch_reader
().
next
()
# run inference
infer_results
=
paddle
.
infer
(
output_layer
=
output_probs
,
parameters
=
parameters
,
input
=
infer_data
)
num_steps
=
len
(
infer_results
)
//
len
(
infer_data
)
probs_split
=
[
infer_results
[
i
*
num_steps
:(
i
+
1
)
*
num_steps
]
for
i
in
xrange
(
0
,
len
(
infer_data
))
tune_data
=
batch_reader
().
next
()
target_transcripts
=
[
''
.
join
([
data_generator
.
vocab_list
[
token
]
for
token
in
transcript
])
for
_
,
transcript
in
tune_data
]
ds2_model
=
DeepSpeech2Model
(
vocab_size
=
data_generator
.
vocab_size
,
num_conv_layers
=
args
.
num_conv_layers
,
num_rnn_layers
=
args
.
num_rnn_layers
,
rnn_layer_size
=
args
.
rnn_layer_size
,
pretrained_model_path
=
args
.
model_filepath
)
# create grid for search
cand_alphas
=
np
.
linspace
(
args
.
alpha_from
,
args
.
alpha_to
,
args
.
num_alphas
)
cand_betas
=
np
.
linspace
(
args
.
beta_from
,
args
.
beta_to
,
args
.
num_betas
)
params_grid
=
[(
alpha
,
beta
)
for
alpha
in
cand_alphas
for
beta
in
cand_betas
]
ext_scorer
=
LmScorer
(
args
.
alpha_from
,
args
.
beta_from
,
args
.
language_model_path
)
## tune parameters in loop
for
alpha
,
beta
in
params_grid
:
wer_sum
,
wer_counter
=
0
,
0
# reset scorer
ext_scorer
.
reset_params
(
alpha
,
beta
)
# beam search using multiple processes
beam_search_results
=
ctc_beam_search_decoder_batch
(
probs_split
=
probs_split
,
vocabulary
=
data_generator
.
vocab_list
,
result_transcripts
=
ds2_model
.
infer_batch
(
infer_data
=
tune_data
,
decode_method
=
'beam_search'
,
beam_alpha
=
alpha
,
beam_beta
=
beta
,
beam_size
=
args
.
beam_size
,
cutoff_prob
=
args
.
cutoff_prob
,
blank_id
=
len
(
data_generator
.
vocab_list
),
num_processes
=
args
.
num_processes_beam_search
,
ext_scoring_func
=
ext_scorer
,
)
for
i
,
beam_search_result
in
enumerate
(
beam_search_results
):
target_transcription
=
''
.
join
([
data_generator
.
vocab_list
[
index
]
for
index
in
infer_data
[
i
][
1
]
])
wer_sum
+=
wer
(
target_transcription
,
beam_search_result
[
0
][
1
])
wer_counter
+=
1
vocab_list
=
data_generator
.
vocab_list
,
language_model_path
=
args
.
language_model_path
,
num_processes
=
args
.
num_processes_beam_search
)
wer_sum
,
num_ins
=
0.0
,
0
for
target
,
result
in
zip
(
target_transcripts
,
result_transcripts
):
wer_sum
+=
wer
(
target
,
result
)
num_ins
+=
1
print
(
"alpha = %f
\t
beta = %f
\t
WER = %f"
%
(
alpha
,
beta
,
wer_sum
/
wer_counter
))
(
alpha
,
beta
,
wer_sum
/
num_ins
))
def
main
():
paddle
.
init
(
use_gpu
=
args
.
use_gpu
,
trainer_count
=
1
)
utils
.
print_arguments
(
args
)
paddle
.
init
(
use_gpu
=
args
.
use_gpu
,
trainer_count
=
args
.
trainer_count
)
tune
()
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录