reader.py 4.8 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3
# -*- coding: utf-8 -*

import numpy as np
Q
Qiao Longfei 已提交
4
import preprocess
Q
Qiao Longfei 已提交
5 6


Q
Qiao Longfei 已提交
7
class Word2VecReader(object):
8
    def __init__(self, dict_path, data_path, filelist, window_size=5):
Q
Qiao Longfei 已提交
9 10
        self.window_size_ = window_size
        self.data_path_ = data_path
11
        self.filelist = filelist
12
        self.num_non_leaf = 0
Q
Qiao Longfei 已提交
13
        self.word_to_id_ = dict()
14 15 16
        self.id_to_word = dict()
        self.word_to_path = dict()
        self.word_to_code = dict()
Q
Qiao Longfei 已提交
17

18 19
        word_all_count = 0
        word_counts = []
Q
Qiao Longfei 已提交
20
        word_id = 0
21

Q
Qiao Longfei 已提交
22 23
        with open(dict_path, 'r') as f:
            for line in f:
24 25
                word, count = line.split()[0], int(line.split()[1])
                self.word_to_id_[word] = word_id
26
                self.id_to_word[word_id] = word  #build id to word dict
Q
Qiao Longfei 已提交
27
                word_id += 1
28 29 30
                word_counts.append(count)
                word_all_count += count

31 32 33 34
        with open(dict_path + "_word_to_id_", 'w+') as f6:
            for k, v in self.word_to_id_.items():
                f6.write(str(k) + " " + str(v) + '\n')

Q
Qiao Longfei 已提交
35
        self.dict_size = len(self.word_to_id_)
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
        self.word_frequencys = [
            float(count) / word_all_count for count in word_counts
        ]
        print("dict_size = " + str(
            self.dict_size)) + " word_all_count = " + str(word_all_count)

        with open(dict_path + "_ptable", 'r') as f2:
            for line in f2:
                self.word_to_path[line.split(":")[0]] = np.fromstring(
                    line.split(':')[1], dtype=int, sep=' ')
                self.num_non_leaf = np.fromstring(
                    line.split(':')[1], dtype=int, sep=' ')[0]
        print("word_ptable dict_size = " + str(len(self.word_to_path)))

        with open(dict_path + "_pcode", 'r') as f3:
            for line in f3:
                self.word_to_code[line.split(":")[0]] = np.fromstring(
                    line.split(':')[1], dtype=int, sep=' ')
        print("word_pcode dict_size = " + str(len(self.word_to_code)))
Q
Qiao Longfei 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

    def get_context_words(self, words, idx, window_size):
        """
        Get the context word list of target word.

        words: the words of the current line
        idx: input word index
        window_size: window size
        """
        target_window = np.random.randint(1, window_size + 1)
        # need to keep in mind that maybe there are no enough words before the target word.
        start_point = idx - target_window if (idx - target_window) > 0 else 0
        end_point = idx + target_window
        # context words of the target word
        targets = set(words[start_point:idx] + words[idx + 1:end_point + 1])
        return list(targets)

72
    def train(self, with_hs):
Q
Qiao Longfei 已提交
73
        def _reader():
74 75 76 77 78 79 80 81 82 83 84 85 86
            for file in self.filelist:
                with open(self.data_path_ + "/" + file, 'r') as f:
                    for line in f:
                        line = preprocess.text_strip(line)
                        word_ids = [
                            self.word_to_id_[word] for word in line.split()
                            if word in self.word_to_id_
                        ]
                        for idx, target_id in enumerate(word_ids):
                            context_word_ids = self.get_context_words(
                                word_ids, idx, self.window_size_)
                            for context_id in context_word_ids:
                                yield [target_id], [context_id]
Q
Qiao Longfei 已提交
87

88
        def _reader_hs():
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
            for file in self.filelist:
                with open(self.data_path_ + "/" + file, 'r') as f:
                    for line in f:
                        line = preprocess.text_strip(line)
                        word_ids = [
                            self.word_to_id_[word] for word in line.split()
                            if word in self.word_to_id_
                        ]
                        for idx, target_id in enumerate(word_ids):
                            context_word_ids = self.get_context_words(
                                word_ids, idx, self.window_size_)
                            for context_id in context_word_ids:
                                yield [target_id], [context_id], [
                                    self.word_to_code[self.id_to_word[
                                        context_id]]
                                ], [
                                    self.word_to_path[self.id_to_word[
                                        context_id]]
                                ]
108 109 110 111 112

        if not with_hs:
            return _reader
        else:
            return _reader_hs
Q
Qiao Longfei 已提交
113 114 115


if __name__ == "__main__":
Q
Qiao Longfei 已提交
116
    window_size = 10
Q
Qiao Longfei 已提交
117

Q
Qiao Longfei 已提交
118
    reader = Word2VecReader("data/enwik9_dict", "data/enwik9", window_size)
Q
Qiao Longfei 已提交
119
    i = 0
Q
Qiao Longfei 已提交
120
    for x, y in reader.train()():
Q
Qiao Longfei 已提交
121 122 123 124 125 126
        print("x: " + str(x))
        print("y: " + str(y))
        print("\n")
        if i == 10:
            exit(0)
        i += 1