Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
db405c78
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
db405c78
编写于
12月 04, 2018
作者:
J
JiabinYang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
change reader to fit 1-billion dataset, add infer
上级
72ed55fb
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
357 addition
and
99 deletion
+357
-99
fluid/PaddleRec/word2vec/README.cn.md
fluid/PaddleRec/word2vec/README.cn.md
+2
-2
fluid/PaddleRec/word2vec/README.md
fluid/PaddleRec/word2vec/README.md
+2
-3
fluid/PaddleRec/word2vec/data/download.sh
fluid/PaddleRec/word2vec/data/download.sh
+2
-2
fluid/PaddleRec/word2vec/infer.py
fluid/PaddleRec/word2vec/infer.py
+187
-0
fluid/PaddleRec/word2vec/network_conf.py
fluid/PaddleRec/word2vec/network_conf.py
+14
-11
fluid/PaddleRec/word2vec/preprocess.py
fluid/PaddleRec/word2vec/preprocess.py
+21
-12
fluid/PaddleRec/word2vec/reader.py
fluid/PaddleRec/word2vec/reader.py
+38
-31
fluid/PaddleRec/word2vec/train.py
fluid/PaddleRec/word2vec/train.py
+91
-38
未找到文件。
fluid/PaddleRec/word2vec/README.cn.md
浏览文件 @
db405c78
...
...
@@ -8,7 +8,7 @@
需要先安装PaddlePaddle Fluid
## 数据集
数据集使用的是来自
Matt Mahoney(http://mattmahoney.net/dc/textdata.html)的维基百科文章数据集enwiki8
.
数据集使用的是来自
1 Billion Word Language Model Benchmark的(http://www.statmt.org/lm-benchmark)的数据集
.
下载数据集:
```
bash
...
...
@@ -23,7 +23,7 @@ cd data && ./download.sh && cd ..
对数据进行预处理以生成一个词典。
```
bash
python preprocess.py
--data_path
data/enwik8
--dict_path
data/enwik8
_dict
python preprocess.py
--data_path
./data/1-billion-word-language-modeling-benchmark-r13output/training-monolingual.tokenized.shuffled
--dict_path
data/1-billion
_dict
```
## 训练
...
...
fluid/PaddleRec/word2vec/README.md
浏览文件 @
db405c78
...
...
@@ -8,8 +8,7 @@
You should install PaddlePaddle Fluid first.
## Dataset
The training data for the Large Text Compression Benchmark is the first 109 bytes
of the English Wikipedia dump on Mar. 3, 2006 from Matt Mahoney(http://mattmahoney.net/dc/textdata.html).
The training data for the 1 Billion Word Language Model Benchmark的(http://www.statmt.org/lm-benchmark).
Download dataset:
```
bash
...
...
@@ -25,7 +24,7 @@ This model implement a skip-gram model of word2vector.
Preprocess the training data to generate a word dict.
```
bash
python preprocess.py
--data_path
data/enwik8
--dict_path
data/enwik8
_dict
python preprocess.py
--data_path
./data/1-billion-word-language-modeling-benchmark-r13output/training-monolingual.tokenized.shuffled
--dict_path
data/1-billion
_dict
```
## Train
...
...
fluid/PaddleRec/word2vec/data/download.sh
浏览文件 @
db405c78
#!/bin/bash
wget http://
mattmahoney.net/dc/enwik8.zip
unzip enwik8.zip
wget http://
www.statmt.org/lm-benchmark/1-billion-word-language-modeling-benchmark-r13output.tar.gz
tar
-zxvf
1-billion-word-language-modeling-benchmark-r13output.tar.gz
fluid/PaddleRec/word2vec/infer.py
浏览文件 @
db405c78
import
paddle
import
time
import
os
import
paddle.fluid
as
fluid
import
numpy
as
np
from
Queue
import
PriorityQueue
import
logging
import
argparse
from
sklearn.metrics.pairwise
import
cosine_similarity
from
paddle.fluid.executor
import
global_scope
word_to_id
=
dict
()
id_to_word
=
dict
()
logging
.
basicConfig
(
format
=
'%(asctime)s - %(levelname)s - %(message)s'
)
logger
=
logging
.
getLogger
(
"fluid"
)
logger
.
setLevel
(
logging
.
INFO
)
def
parse_args
():
parser
=
argparse
.
ArgumentParser
(
description
=
"PaddlePaddle Word2vec infer example"
)
parser
.
add_argument
(
'--dict_path'
,
type
=
str
,
default
=
'./data/1-billion_dict'
,
help
=
"The path of training dataset"
)
parser
.
add_argument
(
'--model_output_dir'
,
type
=
str
,
default
=
'models'
,
help
=
"The path for model to store (with infer_once please set specify dir to models) (default: models)"
)
parser
.
add_argument
(
'--rank_num'
,
type
=
int
,
default
=
4
,
help
=
"find rank_num-nearest result for test (default: 4)"
)
parser
.
add_argument
(
'--infer_once'
,
action
=
'store_true'
,
required
=
False
,
default
=
False
,
help
=
'if using infer_once, (default: False)'
)
return
parser
.
parse_args
()
def
BuildWord_IdMap
(
dict_path
):
with
open
(
dict_path
+
"_word_to_id_"
,
'r'
)
as
f
:
for
line
in
f
:
word_to_id
[
line
.
split
(
' '
)[
0
]]
=
int
(
line
.
split
(
' '
)[
1
])
id_to_word
[
int
(
line
.
split
(
' '
)[
1
])]
=
line
.
split
(
' '
)[
0
]
def
inference_prog
():
fluid
.
layers
.
create_parameter
(
shape
=
[
1
,
1
],
dtype
=
'float32'
,
name
=
"embeding"
)
def
build_test_case
(
emb
):
emb1
=
emb
[
word_to_id
[
'boy'
]]
-
emb
[
word_to_id
[
'girl'
]]
+
emb
[
word_to_id
[
'aunt'
]]
desc1
=
"boy - girl + aunt = uncle"
emb2
=
emb
[
word_to_id
[
'brother'
]]
-
emb
[
word_to_id
[
'sister'
]]
+
emb
[
word_to_id
[
'sisters'
]]
desc2
=
"brother - sister + sisters = brothers"
emb3
=
emb
[
word_to_id
[
'king'
]]
-
emb
[
word_to_id
[
'queen'
]]
+
emb
[
word_to_id
[
'woman'
]]
desc3
=
"king - queen + woman = man"
emb4
=
emb
[
word_to_id
[
'reluctant'
]]
-
emb
[
word_to_id
[
'reluctantly'
]]
+
emb
[
word_to_id
[
'slowly'
]]
desc4
=
"reluctant - reluctantly + slowly = slow"
emb5
=
emb
[
word_to_id
[
'old'
]]
-
emb
[
word_to_id
[
'older'
]]
+
emb
[
word_to_id
[
'deeper'
]]
desc5
=
"old - older + deeper = deep"
return
[[
emb1
,
desc1
],
[
emb2
,
desc2
],
[
emb3
,
desc3
],
[
emb4
,
desc4
],
[
emb5
,
desc5
]]
def
inference_test
(
model_dir
,
args
):
BuildWord_IdMap
(
args
.
dict_path
)
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
())
Scope
=
fluid
.
Scope
()
logger
.
info
(
"model_dir is: {}"
.
format
(
model_dir
+
"/"
))
with
fluid
.
scope_guard
(
Scope
):
inference_prog
()
fluid
.
io
.
load_persistables
(
executor
=
exe
,
dirname
=
model_dir
+
"/"
)
emb
=
np
.
array
(
Scope
.
find_var
(
"embeding"
).
get_tensor
())
test_cases
=
build_test_case
(
emb
)
logger
.
info
(
"inference result: ===================="
)
for
case
in
test_cases
:
pq
=
topK
(
args
.
rank_num
,
emb
,
case
[
0
])
logger
.
info
(
"Test result for {}"
.
format
(
case
[
1
]))
pq_tmps
=
list
()
for
i
in
range
(
args
.
rank_num
):
pq_tmps
.
append
(
pq
.
get
())
for
i
in
range
(
len
(
pq_tmps
)):
logger
.
info
(
"{} nearest is {}, rate is {}"
.
format
(
i
,
id_to_word
[
pq_tmps
[
len
(
pq_tmps
)
-
1
-
i
].
id
],
pq_tmps
[
len
(
pq_tmps
)
-
1
-
i
].
priority
))
del
pq_tmps
[:]
def
infer_with_in_train
(
model_dir
,
rank_num
,
dict_path
):
BuildWord_IdMap
(
dict_path
)
emb
=
np
.
array
(
global_scope
().
find_var
(
"embeding"
).
get_tensor
())
test_cases
=
build_test_case
(
emb
)
logger
.
info
(
"inference result: ===================="
)
for
case
in
test_cases
:
pq
=
topK
(
rank_num
,
emb
,
case
[
0
])
logger
.
info
(
"Test result for {}"
.
format
(
case
[
1
]))
pq_tmps
=
list
()
for
i
in
range
(
rank_num
):
pq_tmps
.
append
(
pq
.
get
())
for
i
in
range
(
len
(
pq_tmps
)):
logger
.
info
(
"{} nearest is {}, rate is {}"
.
format
(
i
,
id_to_word
[
pq_tmps
[
len
(
pq_tmps
)
-
1
-
i
].
id
],
pq_tmps
[
len
(
pq_tmps
)
-
1
-
i
]
.
priority
))
del
pq_tmps
[:]
class
PQ_Entry
(
object
):
def
__init__
(
self
,
cos_similarity
,
id
):
self
.
priority
=
cos_similarity
self
.
id
=
id
def
__cmp__
(
self
,
other
):
return
cmp
(
self
.
priority
,
other
.
priority
)
def
topK
(
k
,
emb
,
test_emb
):
pq
=
PriorityQueue
(
k
+
1
)
if
len
(
emb
)
<=
k
:
for
i
in
range
(
len
(
emb
)):
x
=
cosine_similarity
([
emb
[
i
]],
[
test_emb
])
pq
.
put
(
PQ_Entry
(
x
,
i
))
return
pq
for
i
in
range
(
len
(
emb
)):
x
=
cosine_similarity
([
emb
[
i
]],
[
test_emb
])
pq_e
=
PQ_Entry
(
x
,
i
)
if
pq
.
full
():
pq
.
get
()
pq
.
put
(
pq_e
)
pq
.
get
()
return
pq
def
infer_during_train
(
args
):
model_file_list
=
list
()
while
True
:
time
.
sleep
(
1
)
current_list
=
os
.
listdir
(
args
.
model_output_dir
)
logger
.
info
(
"current_list is : {}"
.
format
(
current_list
))
logger
.
info
(
"model_file_list is : {}"
.
format
(
model_file_list
))
if
set
(
model_file_list
)
==
set
(
current_list
):
logger
.
info
(
"they are the same"
)
pass
else
:
increment_models
=
list
()
for
f
in
current_list
:
if
f
not
in
model_file_list
:
increment_models
.
append
(
f
)
logger
.
info
(
"increment_models is : {}"
.
format
(
increment_models
))
for
model
in
increment_models
:
model_dir
=
args
.
model_output_dir
+
"/"
+
model
if
os
.
path
.
exists
(
model_dir
+
"/_success"
):
logger
.
info
(
"using models from "
+
model_dir
)
inference_test
(
model_dir
,
args
)
model_file_list
=
current_list
def
infer_once
(
args
):
if
os
.
path
.
exists
(
args
.
model_output_dir
+
"/_success"
):
# check models file has already been finished
logger
.
info
(
"using models from "
+
args
.
model_output_dir
)
inference_test
(
args
.
model_output_dir
,
args
)
if
__name__
==
'__main__'
:
args
=
parse_args
()
# while setting infer_once please specify the dir to models file with --model_output_dir
if
args
.
infer_once
:
infer_once
(
args
)
else
:
infer_during_train
(
args
)
fluid/PaddleRec/word2vec/network_conf.py
浏览文件 @
db405c78
...
...
@@ -55,7 +55,8 @@ def skip_gram_word2vec(dict_size,
return
cost
def
hsigmoid_layer
(
input
,
label
,
ptable
,
pcode
,
non_leaf_num
,
is_sparse
):
def
hsigmoid_layer
(
input
,
label
,
path_table
,
path_code
,
non_leaf_num
,
is_sparse
):
if
non_leaf_num
is
None
:
non_leaf_num
=
dict_size
...
...
@@ -63,8 +64,8 @@ def skip_gram_word2vec(dict_size,
input
=
input
,
label
=
label
,
num_classes
=
non_leaf_num
,
path_table
=
ptable
,
path_code
=
pcode
,
path_table
=
p
ath_
table
,
path_code
=
p
ath_
code
,
is_custom
=
True
,
is_sparse
=
is_sparse
)
...
...
@@ -79,16 +80,16 @@ def skip_gram_word2vec(dict_size,
datas
.
append
(
predict_word
)
if
with_hsigmoid
:
ptable
=
fluid
.
layers
.
data
(
name
=
'ptable'
,
p
ath_
table
=
fluid
.
layers
.
data
(
name
=
'p
ath_
table'
,
shape
=
[
max_code_length
if
max_code_length
else
40
],
dtype
=
'int64'
)
pcode
=
fluid
.
layers
.
data
(
name
=
'pcode'
,
p
ath_
code
=
fluid
.
layers
.
data
(
name
=
'p
ath_
code'
,
shape
=
[
max_code_length
if
max_code_length
else
40
],
dtype
=
'int64'
)
datas
.
append
(
ptable
)
datas
.
append
(
pcode
)
datas
.
append
(
p
ath_
table
)
datas
.
append
(
p
ath_
code
)
py_reader
=
fluid
.
layers
.
create_py_reader_by_data
(
capacity
=
64
,
feed_list
=
datas
,
name
=
'py_reader'
,
use_double_buffer
=
True
)
...
...
@@ -99,8 +100,10 @@ def skip_gram_word2vec(dict_size,
input
=
words
[
0
],
is_sparse
=
is_sparse
,
size
=
[
dict_size
,
embedding_size
],
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Normal
(
scale
=
1
/
math
.
sqrt
(
dict_size
))))
param_attr
=
fluid
.
ParamAttr
(
name
=
'embeding'
,
initializer
=
fluid
.
initializer
.
Normal
(
scale
=
1
/
math
.
sqrt
(
dict_size
))))
cost
,
cost_nce
,
cost_hs
=
None
,
None
,
None
...
...
fluid/PaddleRec/word2vec/preprocess.py
浏览文件 @
db405c78
...
...
@@ -22,6 +22,12 @@ def parse_args():
type
=
int
,
default
=
5
,
help
=
"If the word count is less then freq, it will be removed from dict"
)
parser
.
add_argument
(
'--is_local'
,
action
=
'store_true'
,
required
=
False
,
default
=
False
,
help
=
'Local train or not, (default: False)'
)
return
parser
.
parse_args
()
...
...
@@ -114,7 +120,7 @@ def build_Huffman(word_count, max_code_length):
return
word_point
,
word_code
,
word_code_len
def
preprocess
(
data_path
,
dict_path
,
freq
):
def
preprocess
(
data_path
,
dict_path
,
freq
,
is_local
):
"""
proprocess the data, generate dictionary and save into dict_path.
:param data_path: the input data path.
...
...
@@ -125,16 +131,19 @@ def preprocess(data_path, dict_path, freq):
# word to count
word_count
=
dict
()
with
open
(
data_path
)
as
f
:
for
line
in
f
:
line
=
line
.
lower
()
line
=
text_strip
(
line
)
words
=
line
.
split
()
for
item
in
words
:
if
item
in
word_count
:
word_count
[
item
]
=
word_count
[
item
]
+
1
else
:
word_count
[
item
]
=
1
if
is_local
:
for
i
in
range
(
1
,
100
):
with
open
(
data_path
+
"/news.en-000{:0>2d}-of-00100"
.
format
(
i
))
as
f
:
for
line
in
f
:
line
=
line
.
lower
()
line
=
text_strip
(
line
)
words
=
line
.
split
()
for
item
in
words
:
if
item
in
word_count
:
word_count
[
item
]
=
word_count
[
item
]
+
1
else
:
word_count
[
item
]
=
1
item_to_remove
=
[]
for
item
in
word_count
:
if
word_count
[
item
]
<=
freq
:
...
...
@@ -159,4 +168,4 @@ def preprocess(data_path, dict_path, freq):
if
__name__
==
"__main__"
:
args
=
parse_args
()
preprocess
(
args
.
data_path
,
args
.
dict_path
,
args
.
freq
)
preprocess
(
args
.
data_path
,
args
.
dict_path
,
args
.
freq
,
args
.
is_local
)
fluid/PaddleRec/word2vec/reader.py
浏览文件 @
db405c78
...
...
@@ -5,9 +5,10 @@ import preprocess
class
Word2VecReader
(
object
):
def
__init__
(
self
,
dict_path
,
data_path
,
window_size
=
5
):
def
__init__
(
self
,
dict_path
,
data_path
,
filelist
,
window_size
=
5
):
self
.
window_size_
=
window_size
self
.
data_path_
=
data_path
self
.
filelist
=
filelist
self
.
num_non_leaf
=
0
self
.
word_to_id_
=
dict
()
self
.
id_to_word
=
dict
()
...
...
@@ -27,6 +28,10 @@ class Word2VecReader(object):
word_counts
.
append
(
count
)
word_all_count
+=
count
with
open
(
dict_path
+
"_word_to_id_"
,
'w+'
)
as
f6
:
for
k
,
v
in
self
.
word_to_id_
.
items
():
f6
.
write
(
str
(
k
)
+
" "
+
str
(
v
)
+
'
\n
'
)
self
.
dict_size
=
len
(
self
.
word_to_id_
)
self
.
word_frequencys
=
[
float
(
count
)
/
word_all_count
for
count
in
word_counts
...
...
@@ -66,36 +71,40 @@ class Word2VecReader(object):
def
train
(
self
,
with_hs
):
def
_reader
():
with
open
(
self
.
data_path_
,
'r'
)
as
f
:
for
line
in
f
:
line
=
preprocess
.
text_strip
(
line
)
word_ids
=
[
self
.
word_to_id_
[
word
]
for
word
in
line
.
split
()
if
word
in
self
.
word_to_id_
]
for
idx
,
target_id
in
enumerate
(
word_ids
):
context_word_ids
=
self
.
get_context_words
(
word_ids
,
idx
,
self
.
window_size_
)
for
context_id
in
context_word_ids
:
yield
[
target_id
],
[
context_id
]
for
file
in
self
.
filelist
:
with
open
(
self
.
data_path_
+
"/"
+
file
,
'r'
)
as
f
:
for
line
in
f
:
line
=
preprocess
.
text_strip
(
line
)
word_ids
=
[
self
.
word_to_id_
[
word
]
for
word
in
line
.
split
()
if
word
in
self
.
word_to_id_
]
for
idx
,
target_id
in
enumerate
(
word_ids
):
context_word_ids
=
self
.
get_context_words
(
word_ids
,
idx
,
self
.
window_size_
)
for
context_id
in
context_word_ids
:
yield
[
target_id
],
[
context_id
]
def
_reader_hs
():
with
open
(
self
.
data_path_
,
'r'
)
as
f
:
for
line
in
f
:
line
=
preprocess
.
text_strip
(
line
)
word_ids
=
[
self
.
word_to_id_
[
word
]
for
word
in
line
.
split
()
if
word
in
self
.
word_to_id_
]
for
idx
,
target_id
in
enumerate
(
word_ids
):
context_word_ids
=
self
.
get_context_words
(
word_ids
,
idx
,
self
.
window_size_
)
for
context_id
in
context_word_ids
:
yield
[
target_id
],
[
context_id
],
[
self
.
word_to_code
[
self
.
id_to_word
[
context_id
]]
],
[
self
.
word_to_path
[
self
.
id_to_word
[
context_id
]]
]
for
file
in
self
.
filelist
:
with
open
(
self
.
data_path_
+
"/"
+
file
,
'r'
)
as
f
:
for
line
in
f
:
line
=
preprocess
.
text_strip
(
line
)
word_ids
=
[
self
.
word_to_id_
[
word
]
for
word
in
line
.
split
()
if
word
in
self
.
word_to_id_
]
for
idx
,
target_id
in
enumerate
(
word_ids
):
context_word_ids
=
self
.
get_context_words
(
word_ids
,
idx
,
self
.
window_size_
)
for
context_id
in
context_word_ids
:
yield
[
target_id
],
[
context_id
],
[
self
.
word_to_code
[
self
.
id_to_word
[
context_id
]]
],
[
self
.
word_to_path
[
self
.
id_to_word
[
context_id
]]
]
if
not
with_hs
:
return
_reader
...
...
@@ -104,8 +113,6 @@ class Word2VecReader(object):
if
__name__
==
"__main__"
:
epochs
=
10
batch_size
=
1000
window_size
=
10
reader
=
Word2VecReader
(
"data/enwik9_dict"
,
"data/enwik9"
,
window_size
)
...
...
fluid/PaddleRec/word2vec/train.py
浏览文件 @
db405c78
...
...
@@ -15,6 +15,7 @@ import paddle.fluid as fluid
import
reader
from
network_conf
import
skip_gram_word2vec
from
infer
import
infer_with_train
logging
.
basicConfig
(
format
=
'%(asctime)s - %(levelname)s - %(message)s'
)
logger
=
logging
.
getLogger
(
"fluid"
)
...
...
@@ -27,12 +28,12 @@ def parse_args():
parser
.
add_argument
(
'--train_data_path'
,
type
=
str
,
default
=
'./data/
enwik8
'
,
default
=
'./data/
1-billion-word-language-modeling-benchmark-r13output/training-monolingual.tokenized.shuffled
'
,
help
=
"The path of training dataset"
)
parser
.
add_argument
(
'--dict_path'
,
type
=
str
,
default
=
'./data/
enwik8
_dict'
,
default
=
'./data/
1-billion
_dict'
,
help
=
"The path of data dict"
)
parser
.
add_argument
(
'--test_data_path'
,
...
...
@@ -43,7 +44,7 @@ def parse_args():
'--batch_size'
,
type
=
int
,
default
=
100
,
help
=
"The size of mini-batch (default:100
0
)"
)
help
=
"The size of mini-batch (default:100)"
)
parser
.
add_argument
(
'--num_passes'
,
type
=
int
,
...
...
@@ -79,6 +80,7 @@ def parse_args():
type
=
int
,
default
=
40
,
help
=
'max code length used by hierarchical sigmoid, (default: 40)'
)
parser
.
add_argument
(
'--is_sparse'
,
action
=
'store_true'
,
...
...
@@ -86,11 +88,44 @@ def parse_args():
default
=
False
,
help
=
'embedding and nce will use sparse or not, (default: False)'
)
parser
.
add_argument
(
'--with_Adam'
,
action
=
'store_true'
,
required
=
False
,
default
=
False
,
help
=
'Using Adam as optimizer or not, (default: False)'
)
parser
.
add_argument
(
'--is_local'
,
action
=
'store_true'
,
required
=
False
,
default
=
False
,
help
=
'Local train or not, (default: False)'
)
parser
.
add_argument
(
'--with_speed'
,
action
=
'store_true'
,
required
=
False
,
default
=
False
,
help
=
'print speed or not , (default: False)'
)
parser
.
add_argument
(
'--with_infer_test'
,
action
=
'store_true'
,
required
=
False
,
default
=
False
,
help
=
'Do inference every 100 batches , (default: False)'
)
parser
.
add_argument
(
'--rank_num'
,
type
=
int
,
default
=
4
,
help
=
"find rank_num-nearest result for test (default: 4)"
)
return
parser
.
parse_args
()
def
train_loop
(
args
,
train_program
,
reader
,
py_reader
,
loss
,
trainer_id
):
train_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
reader
.
train
((
args
.
with_hs
or
(
not
args
.
with_nce
))),
...
...
@@ -101,15 +136,11 @@ def train_loop(args, train_program, reader, py_reader, loss, trainer_id):
place
=
fluid
.
CPUPlace
()
data_name_list
=
None
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
fluid
.
default_startup_program
())
exec_strategy
=
fluid
.
ExecutionStrategy
()
#if os.getenv("NUM_THREADS", ""):
# exec_strategy.num_threads = int(os.getenv("NUM_THREADS"))
print
(
"CPU_NUM:"
+
str
(
os
.
getenv
(
"CPU_NUM"
)))
exec_strategy
.
num_threads
=
int
(
os
.
getenv
(
"CPU_NUM"
))
...
...
@@ -137,6 +168,7 @@ def train_loop(args, train_program, reader, py_reader, loss, trainer_id):
try
:
while
True
:
if
profiler_step
==
profiler_step_start
:
fluid
.
profiler
.
start_profiler
(
profile_state
)
...
...
@@ -149,51 +181,62 @@ def train_loop(args, train_program, reader, py_reader, loss, trainer_id):
else
:
profiler_step
+=
1
if
batch_id
%
1
0
==
0
:
if
batch_id
%
5
0
==
0
:
logger
.
info
(
"TRAIN --> pass: {} batch: {} loss: {} reader queue:{}"
.
format
(
pass_id
,
batch_id
,
loss_val
.
mean
()
/
args
.
batch_size
,
py_reader
.
queue
.
size
()))
if
batch_id
%
100
==
0
and
batch_id
!=
0
:
elapsed
=
(
time
.
clock
()
-
start
)
start
=
time
.
clock
()
samples
=
101
*
args
.
batch_size
*
int
(
os
.
getenv
(
"CPU_NUM"
))
logger
.
info
(
"Time used: {}, Samples/Sec: {}"
.
format
(
elapsed
,
samples
/
elapsed
))
# elapsed = (time.clock() - start)
# start = time.clock()
# samples = 101 * args.batch_size * int(os.getenv("CPU_NUM"))
# logger.info("Time used: {}, Samples/Sec: {}".format(elapsed, samples/elapsed))
#if batch_id % 1000 == 0 and batch_id != 0:
# model_dir = args.model_output_dir + '/batch-' + str(batch_id)
# if trainer_id == 0:
# fluid.io.save_inference_model(model_dir, data_name_list, [loss], exe)
if
args
.
with_speed
:
if
batch_id
%
1000
==
0
and
batch_id
!=
0
:
elapsed
=
(
time
.
clock
()
-
start
)
start
=
time
.
clock
()
samples
=
1001
*
args
.
batch_size
*
int
(
os
.
getenv
(
"CPU_NUM"
))
logger
.
info
(
"Time used: {}, Samples/Sec: {}"
.
format
(
elapsed
,
samples
/
elapsed
))
if
batch_id
==
200
or
batch_id
==
100
:
model_dir
=
args
.
model_output_dir
+
'/batch-'
+
str
(
batch_id
)
fluid
.
io
.
save_persistables
(
executor
=
exe
,
dirname
=
model_dir
)
with
open
(
model_dir
+
"/_success"
,
'w+'
)
as
f
:
f
.
write
(
str
(
batch_id
))
# calculate infer result each 100 batches
if
args
.
with_infer_test
:
if
batch_id
%
1000
==
0
and
batch_id
!=
0
:
model_dir
=
args
.
model_output_dir
+
'/batch-'
+
str
(
batch_id
)
infer_with_in_train
(
model_dir
,
args
.
rank_num
,
args
.
dict_path
)
batch_id
+=
1
except
fluid
.
core
.
EOFException
:
py_reader
.
reset
()
epoch_end
=
time
.
time
()
print
(
"Epoch: {0}, Train total expend: {1} "
.
format
(
logger
.
info
(
"Epoch: {0}, Train total expend: {1} "
.
format
(
pass_id
,
epoch_end
-
epoch_start
))
#model_dir = args.model_output_dir + '/pass-' + str(pass_id)
#if trainer_id == 0:
# fluid.io.save_inference_model(model_dir, data_name_list, [loss], exe)
model_dir
=
args
.
model_output_dir
+
'/pass-'
+
str
(
pass_id
)
if
trainer_id
==
0
:
fluid
.
io
.
save_persistables
(
executor
=
exe
,
dirname
=
model_dir
)
with
open
(
model_dir
+
"/_success"
,
'w+'
)
as
f
:
f
.
write
(
str
(
pass_id
))
def
train
():
args
=
parse_args
()
def
GetFileList
(
data_path
):
return
os
.
listdir
(
data_path
)
def
train
(
args
):
if
not
os
.
path
.
isdir
(
args
.
model_output_dir
):
os
.
mkdir
(
args
.
model_output_dir
)
filelist
=
GetFileList
(
args
.
train_data_path
)
word2vec_reader
=
reader
.
Word2VecReader
(
args
.
dict_path
,
args
.
train_data_path
)
args
.
train_data_path
,
filelist
)
logger
.
info
(
"dict_size: {}"
.
format
(
word2vec_reader
.
dict_size
))
loss
,
py_reader
=
skip_gram_word2vec
(
word2vec_reader
.
dict_size
,
word2vec_reader
.
word_frequencys
,
...
...
@@ -203,11 +246,16 @@ def train():
args
.
with_nce
,
is_sparse
=
args
.
is_sparse
)
#optimizer = fluid.optimizer.SGD(learning_rate=1e-3)
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
1e-3
)
optimizer
=
None
if
args
.
with_Adam
:
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
1e-3
)
else
:
optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
1e-3
)
optimizer
.
minimize
(
loss
)
if
os
.
getenv
(
"PADDLE_IS_LOCAL"
,
"1"
)
==
"1"
:
# do local training
if
args
.
is_local
or
os
.
getenv
(
"PADDLE_IS_LOCAL"
,
"1"
)
==
"1"
:
logger
.
info
(
"run local training"
)
main_program
=
fluid
.
default_main_program
()
...
...
@@ -215,6 +263,7 @@ def train():
f
.
write
(
str
(
main_program
))
train_loop
(
args
,
main_program
,
word2vec_reader
,
py_reader
,
loss
,
0
)
# do distribute training
else
:
logger
.
info
(
"run dist training"
)
...
...
@@ -278,8 +327,8 @@ def env_declar():
os
.
environ
[
"PADDLE_TRAINERS"
]
=
os
.
environ
[
"PADDLE_TRAINERS_NUM"
]
os
.
environ
[
"PADDLE_CURRENT_IP"
]
=
os
.
environ
[
"POD_IP"
]
os
.
environ
[
"PADDLE_TRAINER_ID"
]
=
os
.
environ
[
"PADDLE_TRAINER_ID"
]
# we set the thread number same as CPU number
os
.
environ
[
"CPU_NUM"
]
=
"12"
os
.
environ
[
"NUM_THREADS"
]
=
"12"
print
(
"Content-Type: text/plain
\n\n
"
)
for
key
in
os
.
environ
.
keys
():
...
...
@@ -289,5 +338,9 @@ def env_declar():
if
__name__
==
'__main__'
:
#`env_declar()
train
()
args
=
parse_args
()
if
args
.
is_local
:
pass
else
:
env_declar
()
train
(
args
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录