Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
f67756ea
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
f67756ea
编写于
11月 16, 2018
作者:
J
JiabinYang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
test=develop merge nce part with hsigmoid part
上级
e955704e
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
232 addition
and
23 deletion
+232
-23
fluid/PaddleRec/word2vec/network_conf.py
fluid/PaddleRec/word2vec/network_conf.py
+62
-16
fluid/PaddleRec/word2vec/preprocess.py
fluid/PaddleRec/word2vec/preprocess.py
+94
-0
fluid/PaddleRec/word2vec/reader.py
fluid/PaddleRec/word2vec/reader.py
+47
-4
fluid/PaddleRec/word2vec/train.py
fluid/PaddleRec/word2vec/train.py
+29
-3
未找到文件。
fluid/PaddleRec/word2vec/network_conf.py
浏览文件 @
f67756ea
...
...
@@ -22,8 +22,15 @@ import numpy as np
import
paddle.fluid
as
fluid
def
skip_gram_word2vec
(
dict_size
,
word_frequencys
,
embedding_size
):
def
nce_layer
(
input
,
label
,
embedding_size
,
num_total_classes
,
num_neg_samples
,
sampler
,
custom_dist
,
sample_weight
):
def
skip_gram_word2vec
(
dict_size
,
word_frequencys
,
embedding_size
,
max_code_length
=
None
,
with_hsigmoid
=
False
,
with_nce
=
True
):
def
nce_layer
(
input
,
label
,
embedding_size
,
num_total_classes
,
num_neg_samples
,
sampler
,
custom_dist
,
sample_weight
):
# convert word_frequencys to tensor
nid_freq_arr
=
np
.
array
(
word_frequencys
).
astype
(
'float32'
)
nid_freq_var
=
fluid
.
layers
.
assign
(
input
=
nid_freq_arr
)
...
...
@@ -31,33 +38,72 @@ def skip_gram_word2vec(dict_size, word_frequencys, embedding_size):
w_param_name
=
"nce_w"
b_param_name
=
"nce_b"
w_param
=
fluid
.
default_main_program
().
global_block
().
create_parameter
(
shape
=
[
num_total_classes
,
embedding_size
],
dtype
=
'float32'
,
name
=
w_param_name
)
shape
=
[
num_total_classes
,
embedding_size
],
dtype
=
'float32'
,
name
=
w_param_name
)
b_param
=
fluid
.
default_main_program
().
global_block
().
create_parameter
(
shape
=
[
num_total_classes
,
1
],
dtype
=
'float32'
,
name
=
b_param_name
)
cost
=
fluid
.
layers
.
nce
(
input
=
input
,
label
=
label
,
num_total_classes
=
num_total_classes
,
sampler
=
sampler
,
custom_dist
=
nid_freq_var
,
sample_weight
=
sample_weight
,
param_attr
=
fluid
.
ParamAttr
(
name
=
w_param_name
),
bias_attr
=
fluid
.
ParamAttr
(
name
=
b_param_name
),
num_neg_samples
=
num_neg_samples
)
cost
=
fluid
.
layers
.
nce
(
input
=
input
,
label
=
label
,
num_total_classes
=
num_total_classes
,
sampler
=
sampler
,
custom_dist
=
nid_freq_var
,
sample_weight
=
sample_weight
,
param_attr
=
fluid
.
ParamAttr
(
name
=
w_param_name
),
bias_attr
=
fluid
.
ParamAttr
(
name
=
b_param_name
),
num_neg_samples
=
num_neg_samples
)
return
cost
def
hsigmoid_layer
(
input
,
label
,
non_leaf_num
,
max_code_length
,
data_list
):
hs_cost
=
None
ptable
=
None
pcode
=
None
if
max_code_length
!=
None
:
ptable
=
fluid
.
layers
.
data
(
name
=
'ptable'
,
shape
=
[
max_code_length
],
dtype
=
'int64'
)
pcode
=
fluid
.
layers
.
data
(
name
=
'pcode'
,
shape
=
[
max_code_length
],
dtype
=
'int64'
)
data_list
.
append
(
pcode
)
data_list
.
append
(
ptable
)
else
:
ptable
=
fluid
.
layers
.
data
(
name
=
'ptable'
,
shape
=
[
40
],
dtype
=
'int64'
)
pcode
=
fluid
.
layers
.
data
(
name
=
'pcode'
,
shape
=
[
40
],
dtype
=
'int64'
)
data_list
.
append
(
pcode
)
data_list
.
append
(
ptable
)
if
non_leaf_num
==
None
:
non_leaf_num
=
dict_size
cost
=
fluid
.
layers
.
hsigmoid
(
input
=
emb
,
label
=
predict_word
,
non_leaf_num
=
non_leaf_num
,
ptable
=
ptable
,
pcode
=
pcode
,
is_costum
=
True
)
return
cost
input_word
=
fluid
.
layers
.
data
(
name
=
"input_word"
,
shape
=
[
1
],
dtype
=
'int64'
)
predict_word
=
fluid
.
layers
.
data
(
name
=
'predict_word'
,
shape
=
[
1
],
dtype
=
'int64'
)
predict_word
=
fluid
.
layers
.
data
(
name
=
'predict_word'
,
shape
=
[
1
],
dtype
=
'int64'
)
cost
=
None
data_list
=
[
input_word
,
predict_word
]
emb
=
fluid
.
layers
.
embedding
(
input
=
input_word
,
size
=
[
dict_size
,
embedding_size
],
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Normal
(
scale
=
1
/
math
.
sqrt
(
dict_size
))))
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Normal
(
scale
=
1
/
math
.
sqrt
(
dict_size
))))
if
with_nce
:
cost
=
nce_layer
(
emb
,
predict_word
,
embedding_size
,
dict_size
,
5
,
"uniform"
,
word_frequencys
,
None
)
if
with_hsigmoid
:
cost
=
hsigmoid_layer
(
emb
,
predict_word
,
dict_size
,
max_code_length
,
data_list
)
cost
=
nce_layer
(
emb
,
predict_word
,
embedding_size
,
dict_size
,
5
,
"uniform"
,
word_frequencys
,
None
)
avg_cost
=
fluid
.
layers
.
reduce_mean
(
cost
)
return
avg_cost
,
data_list
fluid/PaddleRec/word2vec/preprocess.py
浏览文件 @
f67756ea
...
...
@@ -30,6 +30,90 @@ def text_strip(text):
return
re
.
sub
(
"[^a-z ]"
,
""
,
text
)
def
build_Huffman
(
word_count
,
max_code_length
):
MAX_CODE_LENGTH
=
max_code_length
sorted_by_freq
=
sorted
(
word_count
.
items
(),
key
=
lambda
x
:
x
[
1
])
count
=
list
()
vocab_size
=
len
(
word_count
)
parent
=
[
-
1
]
*
2
*
vocab_size
code
=
[
-
1
]
*
MAX_CODE_LENGTH
point
=
[
-
1
]
*
MAX_CODE_LENGTH
binary
=
[
-
1
]
*
2
*
vocab_size
word_code_len
=
dict
()
word_code
=
dict
()
word_point
=
dict
()
i
=
0
for
a
in
range
(
vocab_size
):
count
.
append
(
word_count
[
sorted_by_freq
[
a
][
0
]])
for
a
in
range
(
vocab_size
):
word_point
[
sorted_by_freq
[
a
][
0
]]
=
[
-
1
]
*
MAX_CODE_LENGTH
word_code
[
sorted_by_freq
[
a
][
0
]]
=
[
-
1
]
*
MAX_CODE_LENGTH
for
k
in
range
(
vocab_size
):
count
.
append
(
1e15
)
pos1
=
vocab_size
-
1
pos2
=
vocab_size
min1i
=
0
min2i
=
0
b
=
0
for
r
in
range
(
vocab_size
):
if
pos1
>=
0
:
if
count
[
pos1
]
<
count
[
pos2
]:
min1i
=
pos1
pos1
=
pos1
-
1
else
:
min1i
=
pos2
pos2
=
pos2
+
1
else
:
min1i
=
pos2
pos2
=
pos2
+
1
if
pos1
>=
0
:
if
count
[
pos1
]
<
count
[
pos2
]:
min2i
=
pos1
pos1
=
pos1
-
1
else
:
min2i
=
pos2
pos2
=
pos2
+
1
else
:
min2i
=
pos2
pos2
=
pos2
+
1
count
[
vocab_size
+
r
]
=
count
[
min1i
]
+
count
[
min2i
]
#record the parent of left and right child
parent
[
min1i
]
=
vocab_size
+
r
parent
[
min2i
]
=
vocab_size
+
r
binary
[
min1i
]
=
0
#left branch has code 0
binary
[
min2i
]
=
1
#right branch has code 1
for
a
in
range
(
vocab_size
):
b
=
a
i
=
0
while
True
:
code
[
i
]
=
binary
[
b
]
point
[
i
]
=
b
i
=
i
+
1
b
=
parent
[
b
]
if
b
==
vocab_size
*
2
-
2
:
break
word_code_len
[
sorted_by_freq
[
a
][
0
]]
=
i
word_point
[
sorted_by_freq
[
a
][
0
]][
0
]
=
vocab_size
-
2
for
k
in
range
(
i
):
word_code
[
sorted_by_freq
[
a
][
0
]][
i
-
k
-
1
]
=
code
[
k
]
# only non-leaf nodes will be count in
if
point
[
k
]
-
vocab_size
>=
0
:
word_point
[
sorted_by_freq
[
a
][
0
]][
i
-
k
]
=
point
[
k
]
-
vocab_size
return
word_point
,
word_code
,
word_code_len
def
preprocess
(
data_path
,
dict_path
,
freq
):
"""
proprocess the data, generate dictionary and save into dict_path.
...
...
@@ -58,10 +142,20 @@ def preprocess(data_path, dict_path, freq):
for
item
in
item_to_remove
:
del
word_count
[
item
]
path_table
,
path_code
,
word_code_len
=
build_Huffman
(
word_count
,
40
)
with
open
(
dict_path
,
'w+'
)
as
f
:
for
k
,
v
in
word_count
.
items
():
f
.
write
(
str
(
k
)
+
" "
+
str
(
v
)
+
'
\n
'
)
with
open
(
dict_path
+
"_ptable"
,
'w+'
)
as
f2
:
for
pk
,
pv
in
path_table
.
items
():
f2
.
write
(
str
(
pk
)
+
":"
+
' '
.
join
((
str
(
x
)
for
x
in
pv
))
+
'
\n
'
)
with
open
(
dict_path
+
"_pcode"
,
'w+'
)
as
f3
:
for
pck
,
pcv
in
path_table
.
items
():
f3
.
write
(
str
(
pck
)
+
":"
+
' '
.
join
((
str
(
x
)
for
x
in
pcv
))
+
'
\n
'
)
if
__name__
==
"__main__"
:
args
=
parse_args
()
...
...
fluid/PaddleRec/word2vec/reader.py
浏览文件 @
f67756ea
...
...
@@ -8,7 +8,11 @@ class Word2VecReader(object):
def
__init__
(
self
,
dict_path
,
data_path
,
window_size
=
5
):
self
.
window_size_
=
window_size
self
.
data_path_
=
data_path
self
.
num_non_leaf
=
0
self
.
word_to_id_
=
dict
()
self
.
id_to_word
=
dict
()
self
.
word_to_path
=
dict
()
self
.
word_to_code
=
dict
()
word_all_count
=
0
word_counts
=
[]
...
...
@@ -18,13 +22,31 @@ class Word2VecReader(object):
for
line
in
f
:
word
,
count
=
line
.
split
()[
0
],
int
(
line
.
split
()[
1
])
self
.
word_to_id_
[
word
]
=
word_id
self
.
id_to_word
[
word_id
]
=
word
#build id to word dict
word_id
+=
1
word_counts
.
append
(
count
)
word_all_count
+=
count
self
.
dict_size
=
len
(
self
.
word_to_id_
)
self
.
word_frequencys
=
[
float
(
count
)
/
word_all_count
for
count
in
word_counts
]
print
(
"dict_size = "
+
str
(
self
.
dict_size
))
+
" word_all_count = "
+
str
(
word_all_count
)
self
.
word_frequencys
=
[
float
(
count
)
/
word_all_count
for
count
in
word_counts
]
print
(
"dict_size = "
+
str
(
self
.
dict_size
))
+
" word_all_count = "
+
str
(
word_all_count
)
with
open
(
dict_path
+
"_ptable"
,
'r'
)
as
f2
:
for
line
in
f2
:
self
.
word_to_path
[
line
.
split
(
":"
)[
0
]]
=
np
.
fromstring
(
line
.
split
(
':'
)[
1
],
dtype
=
int
,
sep
=
' '
)
self
.
num_non_leaf
=
np
.
fromstring
(
line
.
split
(
':'
)[
1
],
dtype
=
int
,
sep
=
' '
)[
0
]
print
(
"word_ptable dict_size = "
+
str
(
len
(
self
.
word_to_path
)))
with
open
(
dict_path
+
"_pcode"
,
'r'
)
as
f3
:
for
line
in
f3
:
self
.
word_to_code
[
line
.
split
(
":"
)[
0
]]
=
np
.
fromstring
(
line
.
split
(
':'
)[
1
],
dtype
=
int
,
sep
=
' '
)
print
(
"word_pcode dict_size = "
+
str
(
len
(
self
.
word_to_code
)))
def
get_context_words
(
self
,
words
,
idx
,
window_size
):
"""
...
...
@@ -42,7 +64,7 @@ class Word2VecReader(object):
targets
=
set
(
words
[
start_point
:
idx
]
+
words
[
idx
+
1
:
end_point
+
1
])
return
list
(
targets
)
def
train
(
self
):
def
train
(
self
,
with_hs
):
def
_reader
():
with
open
(
self
.
data_path_
,
'r'
)
as
f
:
for
line
in
f
:
...
...
@@ -57,7 +79,28 @@ class Word2VecReader(object):
for
context_id
in
context_word_ids
:
yield
[
target_id
],
[
context_id
]
return
_reader
def
_reader_hs
():
with
open
(
self
.
data_path_
,
'r'
)
as
f
:
for
line
in
f
:
line
=
preprocess
.
text_strip
(
line
)
word_ids
=
[
self
.
word_to_id_
[
word
]
for
word
in
line
.
split
()
if
word
in
self
.
word_to_id_
]
for
idx
,
target_id
in
enumerate
(
word_ids
):
context_word_ids
=
self
.
get_context_words
(
word_ids
,
idx
,
self
.
window_size_
)
for
context_id
in
context_word_ids
:
yield
[
target_id
],
[
context_id
],
[
self
.
word_to_code
[
self
.
id_to_word
[
context_id
]]
],
[
self
.
word_to_path
[
self
.
id_to_word
[
context_id
]]
]
if
not
with_hs
:
return
_reader
else
:
return
_reader_hs
if
__name__
==
"__main__"
:
...
...
fluid/PaddleRec/word2vec/train.py
浏览文件 @
f67756ea
...
...
@@ -3,6 +3,7 @@ from __future__ import print_function
import
argparse
import
logging
import
os
import
time
# disable gpu training for this example
os
.
environ
[
"CUDA_VISIBLE_DEVICES"
]
=
""
...
...
@@ -87,6 +88,21 @@ def parse_args():
type
=
int
,
default
=
1
,
help
=
'The num of trianers, (default: 1)'
)
parser
.
add_argument
(
'--with_hs'
,
type
=
int
,
default
=
0
,
help
=
'using hierarchical sigmoid, (default: 0)'
)
parser
.
add_argument
(
'--with_nce'
,
type
=
int
,
default
=
1
,
help
=
'using negtive sampling, (default: 1)'
)
parser
.
add_argument
(
'--max_code_length'
,
type
=
int
,
default
=
40
,
help
=
'max code length used by hierarchical sigmoid, (default: 40)'
)
return
parser
.
parse_args
()
...
...
@@ -95,15 +111,18 @@ def train_loop(args, train_program, reader, data_list, loss, trainer_num,
trainer_id
):
train_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
reader
.
train
(),
buf_size
=
args
.
batch_size
*
100
),
reader
.
train
((
args
.
with_hs
or
(
not
args
.
with_nce
))),
buf_size
=
args
.
batch_size
*
100
),
batch_size
=
args
.
batch_size
)
place
=
fluid
.
CPUPlace
()
feeder
=
fluid
.
DataFeeder
(
feed_list
=
data_list
,
place
=
place
)
data_name_list
=
[
var
.
name
for
var
in
data_list
]
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
fluid
.
default_startup_program
())
start
=
time
.
clock
()
for
pass_id
in
range
(
args
.
num_passes
):
for
batch_id
,
data
in
enumerate
(
train_reader
()):
loss_val
=
exe
.
run
(
train_program
,
...
...
@@ -112,6 +131,10 @@ def train_loop(args, train_program, reader, data_list, loss, trainer_num,
if
batch_id
%
10
==
0
:
logger
.
info
(
"TRAIN --> pass: {} batch: {} loss: {}"
.
format
(
pass_id
,
batch_id
,
loss_val
[
0
]
/
args
.
batch_size
))
if
batch_id
%
1000
==
0
and
batch_id
!=
0
:
elapsed
=
(
time
.
clock
()
-
start
)
logger
.
info
(
"Time used: {}"
.
format
(
elapsed
))
if
batch_id
%
1000
==
0
and
batch_id
!=
0
:
model_dir
=
args
.
model_output_dir
+
'/batch-'
+
str
(
batch_id
)
if
args
.
trainer_id
==
0
:
...
...
@@ -133,9 +156,12 @@ def train():
args
.
train_data_path
)
logger
.
info
(
"dict_size: {}"
.
format
(
word2vec_reader
.
dict_size
))
logger
.
info
(
"word_frequencys length: {}"
.
format
(
len
(
word2vec_reader
.
word_frequencys
)))
logger
.
info
(
"word_frequencys length: {}"
.
format
(
len
(
word2vec_reader
.
word_frequencys
)))
loss
,
data_list
=
skip_gram_word2vec
(
word2vec_reader
.
dict_size
,
word2vec_reader
.
word_frequencys
,
args
.
embedding_size
)
loss
,
data_list
=
skip_gram_word2vec
(
word2vec_reader
.
dict_size
,
word2vec_reader
.
word_frequencys
,
args
.
embedding_size
,
args
.
max_code_length
,
args
.
with_hs
,
args
.
with_nce
)
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
1e-3
)
optimizer
.
minimize
(
loss
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录