config.py 2.7 KB
Newer Older
D
dengkaipeng 已提交
1
#  Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
D
dengkaipeng 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#    http://www.apache.org/licenses/LICENSE-2.0
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License. 

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
T
tink2123 已提交
16
from edict import AttrDict
D
dengkaipeng 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
import six
import numpy as np

_C = AttrDict()
cfg = _C

#
# Training options
#

# Snapshot period
_C.snapshot_iter = 2000

# min valid area for gt boxes
_C.gt_min_area = -1

# max target box number in an image
_C.max_box_num = 50

#
# Training options
#

# valid score threshold to include boxes
D
dengkaipeng 已提交
41
_C.valid_thresh = 0.005
D
dengkaipeng 已提交
42 43 44 45 46 47 48 49 50 51 52

# threshold vale for box non-max suppression
_C.nms_thresh = 0.45

# the number of top k boxes to perform nms
_C.nms_topk = 400

# the number of output boxes after nms
_C.nms_posk = 100

# score threshold for draw box in debug mode
D
dengkaipeng 已提交
53
_C.draw_thresh = 0.5
D
dengkaipeng 已提交
54 55 56 57 58 59 60 61 62 63 64

#
# Model options
#

# pixel mean values
_C.pixel_means = [0.485, 0.456, 0.406]

# pixel std values
_C.pixel_stds = [0.229, 0.224, 0.225]

D
dengkaipeng 已提交
65
# anchors box weight and height
u010070587's avatar
u010070587 已提交
66 67 68
_C.anchors = [
    10, 13, 16, 30, 33, 23, 30, 61, 62, 45, 59, 119, 116, 90, 156, 198, 373, 326
]
D
dengkaipeng 已提交
69 70 71 72 73 74 75

# anchor mask of each yolo layer
_C.anchor_masks = [[6, 7, 8], [3, 4, 5], [0, 1, 2]]

# IoU threshold to ignore objectness loss of pred box
_C.ignore_thresh = .7

D
dengkaipeng 已提交
76 77 78 79
#
# SOLVER options
#

D
dengkaipeng 已提交
80
# batch size
D
dengkaipeng 已提交
81
_C.batch_size = 8
D
dengkaipeng 已提交
82

D
dengkaipeng 已提交
83 84 85 86
# derived learning rate the to get the final learning rate.
_C.learning_rate = 0.001

# maximum number of iterations
D
dengkaipeng 已提交
87
_C.max_iter = 500200
D
dengkaipeng 已提交
88 89

# warm up to learning rate 
D
dengkaipeng 已提交
90
_C.warm_up_iter = 4000
D
dengkaipeng 已提交
91 92 93
_C.warm_up_factor = 0.

# lr steps_with_decay
D
dengkaipeng 已提交
94 95
_C.lr_steps = [400000, 450000]
_C.lr_gamma = 0.1
D
dengkaipeng 已提交
96 97 98 99 100 101 102

# L2 regularization hyperparameter
_C.weight_decay = 0.0005

# momentum with SGD
_C.momentum = 0.9

D
dengkaipeng 已提交
103
#
D
dengkaipeng 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
# ENV options
#

# support both CPU and GPU
_C.use_gpu = True

# Class number
_C.class_num = 80

# dataset path
_C.train_file_list = 'annotations/instances_train2017.json'
_C.train_data_dir = 'train2017'
_C.val_file_list = 'annotations/instances_val2017.json'
_C.val_data_dir = 'val2017'


def merge_cfg_from_args(args):
    """Merge config keys, values in args into the global config."""
    for k, v in sorted(six.iteritems(vars(args))):
        try:
            value = eval(v)
        except:
            value = v
        _C[k] = value