Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
eea7f8c0
M
models
项目概览
PaddlePaddle
/
models
大约 2 年 前同步成功
通知
232
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
“6803b882542d93a22a5f6991efb7d17019903bfc”上不存在“develop/doc/design/kernel_hint_design.html”
提交
eea7f8c0
编写于
2月 11, 2019
作者:
D
dengkaipeng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix for random_shape interval
上级
8ceb9849
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
37 addition
and
59 deletion
+37
-59
fluid/PaddleCV/yolov3/config/config.py
fluid/PaddleCV/yolov3/config/config.py
+3
-3
fluid/PaddleCV/yolov3/data_utils.py
fluid/PaddleCV/yolov3/data_utils.py
+2
-0
fluid/PaddleCV/yolov3/models.py
fluid/PaddleCV/yolov3/models.py
+3
-3
fluid/PaddleCV/yolov3/reader.py
fluid/PaddleCV/yolov3/reader.py
+23
-45
fluid/PaddleCV/yolov3/train.py
fluid/PaddleCV/yolov3/train.py
+5
-4
fluid/PaddleCV/yolov3/utility.py
fluid/PaddleCV/yolov3/utility.py
+1
-4
未找到文件。
fluid/PaddleCV/yolov3/config/config.py
浏览文件 @
eea7f8c0
...
@@ -75,12 +75,12 @@ _C.learning_rate = 0.001
...
@@ -75,12 +75,12 @@ _C.learning_rate = 0.001
_C
.
max_iter
=
500000
_C
.
max_iter
=
500000
# warm up to learning rate
# warm up to learning rate
_C
.
warm_up_iter
=
4
000
_C
.
warm_up_iter
=
1
000
_C
.
warm_up_factor
=
0.
_C
.
warm_up_factor
=
0.
# lr steps_with_decay
# lr steps_with_decay
_C
.
lr_steps
=
[
350000
,
400000
,
450000
]
_C
.
lr_steps
=
[
400000
,
450000
]
_C
.
lr_gamma
=
[
0.5
,
0.1
,
0.01
]
_C
.
lr_gamma
=
0.1
# L2 regularization hyperparameter
# L2 regularization hyperparameter
_C
.
weight_decay
=
0.0005
_C
.
weight_decay
=
0.0005
...
...
fluid/PaddleCV/yolov3/data_utils.py
浏览文件 @
eea7f8c0
...
@@ -67,6 +67,7 @@ class GeneratorEnqueuer(object):
...
@@ -67,6 +67,7 @@ class GeneratorEnqueuer(object):
while
(
True
):
while
(
True
):
if
self
.
queues
[
queue_idx
].
full
():
if
self
.
queues
[
queue_idx
].
full
():
queue_idx
=
(
queue_idx
+
1
)
%
self
.
size_num
queue_idx
=
(
queue_idx
+
1
)
%
self
.
size_num
time
.
sleep
(
0.02
)
continue
continue
else
:
else
:
size
=
self
.
random_sizes
[
queue_idx
]
size
=
self
.
random_sizes
[
queue_idx
]
...
@@ -77,6 +78,7 @@ class GeneratorEnqueuer(object):
...
@@ -77,6 +78,7 @@ class GeneratorEnqueuer(object):
try
:
try
:
self
.
queues
[
queue_idx
].
put_nowait
(
generator_output
)
self
.
queues
[
queue_idx
].
put_nowait
(
generator_output
)
except
:
except
:
timw
.
sleep
(
self
.
wait_time
)
continue
continue
else
:
else
:
break
break
...
...
fluid/PaddleCV/yolov3/models.py
浏览文件 @
eea7f8c0
...
@@ -204,13 +204,13 @@ class YOLOv3(object):
...
@@ -204,13 +204,13 @@ class YOLOv3(object):
x
=
out
,
x
=
out
,
gtbox
=
self
.
gtbox
,
gtbox
=
self
.
gtbox
,
gtlabel
=
self
.
gtlabel
,
gtlabel
=
self
.
gtlabel
,
gtscore
=
self
.
gtscore
,
#
gtscore=self.gtscore,
anchors
=
anchors
,
anchors
=
anchors
,
anchor_mask
=
anchor_mask
,
anchor_mask
=
anchor_mask
,
class_num
=
class_num
,
class_num
=
class_num
,
ignore_thresh
=
ignore_thresh
,
ignore_thresh
=
ignore_thresh
,
downsample
=
self
.
downsample
,
downsample
_ratio
=
self
.
downsample
,
use_label_smooth
=
False
,
#
use_label_smooth=False,
name
=
"yolo_loss"
+
str
(
i
))
name
=
"yolo_loss"
+
str
(
i
))
self
.
losses
.
append
(
fluid
.
layers
.
reduce_mean
(
loss
))
self
.
losses
.
append
(
fluid
.
layers
.
reduce_mean
(
loss
))
self
.
downsample
//=
2
self
.
downsample
//=
2
...
...
fluid/PaddleCV/yolov3/reader.py
浏览文件 @
eea7f8c0
...
@@ -141,7 +141,7 @@ class DataSetReader(object):
...
@@ -141,7 +141,7 @@ class DataSetReader(object):
else
:
else
:
return
self
.
_parse_images
(
is_train
=
(
mode
==
'train'
))
return
self
.
_parse_images
(
is_train
=
(
mode
==
'train'
))
def
get_reader
(
self
,
mode
,
size
=
416
,
batch_size
=
None
,
shuffle
=
False
,
mixup
_iter
=
0
,
random_sizes
=
[],
image
=
None
):
def
get_reader
(
self
,
mode
,
size
=
416
,
batch_size
=
None
,
shuffle
=
False
,
random_shape
_iter
=
0
,
random_sizes
=
[],
image
=
None
):
assert
mode
in
[
'train'
,
'test'
,
'infer'
],
"Unknow mode type!"
assert
mode
in
[
'train'
,
'test'
,
'infer'
],
"Unknow mode type!"
if
mode
!=
'infer'
:
if
mode
!=
'infer'
:
assert
batch_size
is
not
None
,
"batch size connot be None in mode {}"
.
format
(
mode
)
assert
batch_size
is
not
None
,
"batch size connot be None in mode {}"
.
format
(
mode
)
...
@@ -157,11 +157,10 @@ class DataSetReader(object):
...
@@ -157,11 +157,10 @@ class DataSetReader(object):
im_scale_x
=
size
/
float
(
w
)
im_scale_x
=
size
/
float
(
w
)
im_scale_y
=
size
/
float
(
h
)
im_scale_y
=
size
/
float
(
h
)
out_img
=
cv2
.
resize
(
im
,
None
,
None
,
fx
=
im_scale_x
,
fy
=
im_scale_y
,
interpolation
=
cv2
.
INTER_LINEAR
)
out_img
=
cv2
.
resize
(
im
,
None
,
None
,
fx
=
im_scale_x
,
fy
=
im_scale_y
,
interpolation
=
cv2
.
INTER_LINEAR
)
# mean = np.array(mean).reshape((1, 1, -1))
mean
=
np
.
array
(
mean
).
reshape
((
1
,
1
,
-
1
))
# std = np.array(std).reshape((1, 1, -1))
std
=
np
.
array
(
std
).
reshape
((
1
,
1
,
-
1
))
# out_img = (out_img / 255.0 - mean) / std
out_img
=
(
out_img
/
255.0
-
mean
)
/
std
# out_img = out_img.transpose((2, 0, 1))
out_img
=
out_img
.
transpose
((
2
,
0
,
1
))
out_img
=
out_img
.
astype
(
'float32'
).
transpose
((
2
,
0
,
1
))
/
255.0
return
(
out_img
,
int
(
img
[
'id'
]),
(
h
,
w
))
return
(
out_img
,
int
(
img
[
'id'
]),
(
h
,
w
))
...
@@ -173,23 +172,12 @@ class DataSetReader(object):
...
@@ -173,23 +172,12 @@ class DataSetReader(object):
gt_labels
=
img
[
'gt_labels'
].
copy
()
gt_labels
=
img
[
'gt_labels'
].
copy
()
gt_scores
=
np
.
ones_like
(
gt_labels
)
gt_scores
=
np
.
ones_like
(
gt_labels
)
# if mixup_img:
im
,
gt_boxes
,
gt_labels
,
gt_scores
=
image_utils
.
image_augment
(
im
,
gt_boxes
,
gt_labels
,
gt_scores
,
size
,
mean
)
# mixup_im = cv2.imread(mixup_img['image'])
# mixup_im = cv2.cvtColor(mixup_im, cv2.COLOR_BGR2RGB)
# mixup_gt_boxes = mixup_img['gt_boxes'].copy()
# mixup_gt_labels = mixup_img['gt_labels'].copy()
# mixup_gt_scores = np.ones_like(mixup_gt_labels)
# im, gt_boxes, gt_labels, gt_scores = image_utils.image_mixup(im, gt_boxes, \
# gt_labels, gt_scores, mixup_im, mixup_gt_boxes, mixup_gt_labels, \
# mixup_gt_scores)
im
,
gt_boxes
,
gt_labels
,
gt_scores
=
image_utils
.
image_augment
(
im
,
gt_boxes
,
gt_labels
,
gt_scores
,
size
,
[
0.5
]
*
3
)
mean
=
np
.
array
(
mean
).
reshape
((
1
,
1
,
-
1
))
std
=
np
.
array
(
std
).
reshape
((
1
,
1
,
-
1
))
# mean = np.array(mean).reshape((1, 1, -1))
out_img
=
(
im
/
255.0
-
mean
)
/
std
# std = np.array(std).reshape((1, 1, -1))
out_img
=
out_img
.
astype
(
'float32'
).
transpose
((
2
,
0
,
1
))
# out_img = (im / 255.0 - mean) / std
# out_img = out_img.transpose((2, 0, 1)).astype('float32')
out_img
=
im
.
astype
(
'float32'
).
transpose
((
2
,
0
,
1
))
/
255.0
return
(
out_img
,
gt_boxes
,
gt_labels
,
gt_scores
)
return
(
out_img
,
gt_boxes
,
gt_labels
,
gt_scores
)
...
@@ -198,29 +186,20 @@ class DataSetReader(object):
...
@@ -198,29 +186,20 @@ class DataSetReader(object):
return
np
.
random
.
choice
(
random_sizes
)
return
np
.
random
.
choice
(
random_sizes
)
return
size
return
size
def
get_mixup_img
(
imgs
,
mixup_iter
,
total_read_cnt
):
if
total_read_cnt
>=
mixup_iter
:
return
None
mixup_idx
=
np
.
random
.
randint
(
1
,
len
(
imgs
))
mixup_img
=
imgs
[(
total_read_cnt
+
mixup_idx
)
%
len
(
imgs
)]
return
mixup_img
def
reader
():
def
reader
():
if
mode
==
'train'
:
if
mode
==
'train'
:
imgs
=
self
.
_parse_images_by_mode
(
mode
)
imgs
=
self
.
_parse_images_by_mode
(
mode
)
if
shuffle
:
if
shuffle
:
np
.
random
.
shuffle
(
imgs
)
np
.
random
.
shuffle
(
imgs
)
read_cnt
=
0
read_cnt
=
0
total_
read_cnt
=
0
total_
iter
=
0
batch_out
=
[]
batch_out
=
[]
img_size
=
get_img_size
(
size
,
random_sizes
)
img_size
=
get_img_size
(
size
,
random_sizes
)
# img_ids = []
# img_ids = []
while
True
:
while
True
:
img
=
imgs
[
read_cnt
%
len
(
imgs
)]
img
=
imgs
[
read_cnt
%
len
(
imgs
)]
mixup_img
=
get_mixup_img
(
imgs
,
mixup_iter
,
total_read_cnt
)
mixup_img
=
None
read_cnt
+=
1
read_cnt
+=
1
total_read_cnt
+=
1
if
read_cnt
%
len
(
imgs
)
==
0
and
shuffle
:
if
read_cnt
%
len
(
imgs
)
==
0
and
shuffle
:
np
.
random
.
shuffle
(
imgs
)
np
.
random
.
shuffle
(
imgs
)
im
,
gt_boxes
,
gt_labels
,
gt_scores
=
img_reader_with_augment
(
img
,
img_size
,
cfg
.
pixel_means
,
cfg
.
pixel_stds
,
mixup_img
)
im
,
gt_boxes
,
gt_labels
,
gt_scores
=
img_reader_with_augment
(
img
,
img_size
,
cfg
.
pixel_means
,
cfg
.
pixel_stds
,
mixup_img
)
...
@@ -231,7 +210,8 @@ class DataSetReader(object):
...
@@ -231,7 +210,8 @@ class DataSetReader(object):
# print("img_ids: ", img_ids)
# print("img_ids: ", img_ids)
yield
batch_out
yield
batch_out
batch_out
=
[]
batch_out
=
[]
if
total_read_cnt
%
10
==
0
:
total_iter
+=
1
if
total_iter
%
10
==
0
:
img_size
=
get_img_size
(
size
,
random_sizes
)
img_size
=
get_img_size
(
size
,
random_sizes
)
# img_ids = []
# img_ids = []
...
@@ -262,17 +242,13 @@ dsr = DataSetReader()
...
@@ -262,17 +242,13 @@ dsr = DataSetReader()
def
train
(
size
=
416
,
def
train
(
size
=
416
,
batch_size
=
64
,
batch_size
=
64
,
shuffle
=
True
,
shuffle
=
True
,
mixup
_iter
=
0
,
random_shape
_iter
=
0
,
random_sizes
=
[],
random_sizes
=
[],
interval
=
10
,
interval
=
10
,
pyreader_num
=
1
,
pyreader_num
=
1
,
use_multiprocessing
=
True
,
num_workers
=
16
,
num_workers
=
12
,
max_queue
=
32
):
max_queue
=
32
):
generator
=
dsr
.
get_reader
(
'train'
,
size
,
batch_size
,
shuffle
,
mixup_iter
,
random_sizes
)
generator
=
dsr
.
get_reader
(
'train'
,
size
,
batch_size
,
shuffle
,
random_shape_iter
,
random_sizes
)
if
not
use_multiprocessing
:
return
generator
def
infinite_reader
():
def
infinite_reader
():
while
True
:
while
True
:
...
@@ -282,27 +258,29 @@ def train(size=416,
...
@@ -282,27 +258,29 @@ def train(size=416,
def
reader
():
def
reader
():
try
:
try
:
enqueuer
=
GeneratorEnqueuer
(
enqueuer
=
GeneratorEnqueuer
(
infinite_reader
(),
use_multiprocessing
=
use_multiprocessing
)
infinite_reader
(),
use_multiprocessing
=
True
)
enqueuer
.
start
(
max_queue_size
=
max_queue
,
workers
=
num_workers
,
random_sizes
=
random_sizes
)
enqueuer
.
start
(
max_queue_size
=
max_queue
,
workers
=
num_workers
,
random_sizes
=
random_sizes
)
generator_out
=
None
generator_out
=
None
np
.
random
.
seed
(
1000
)
np
.
random
.
seed
(
1000
)
intervals
=
pyreader_num
*
interval
intervals
=
pyreader_num
*
interval
total_random_iter
=
pyreader_num
*
random_shape_iter
cnt
=
0
cnt
=
0
idx
=
np
.
random
.
randint
(
len
(
random_sizes
))
idx
=
len
(
random_sizes
)
-
1
while
True
:
while
True
:
while
enqueuer
.
is_running
():
while
enqueuer
.
is_running
():
if
not
enqueuer
.
queues
[
idx
].
empty
():
if
not
enqueuer
.
queues
[
idx
].
empty
():
generator_out
=
enqueuer
.
queues
[
idx
].
get
()
generator_out
=
enqueuer
.
queues
[
idx
].
get
()
break
break
else
:
else
:
print
(
idx
,
" empty"
)
time
.
sleep
(
0.02
)
time
.
sleep
(
0.02
)
yield
generator_out
yield
generator_out
generator_out
=
None
generator_out
=
None
cnt
+=
1
cnt
+=
1
if
cnt
%
intervals
==
0
:
if
cnt
%
intervals
==
0
:
idx
=
np
.
random
.
randint
(
len
(
random_sizes
))
idx
=
np
.
random
.
randint
(
len
(
random_sizes
))
print
(
"Resizing: "
,
(
idx
+
10
)
*
32
)
if
cnt
>=
total_random_iter
:
idx
=
-
1
print
(
"Resizing: "
,
random_sizes
[
idx
])
finally
:
finally
:
if
enqueuer
is
not
None
:
if
enqueuer
is
not
None
:
enqueuer
.
stop
()
enqueuer
.
stop
()
...
...
fluid/PaddleCV/yolov3/train.py
浏览文件 @
eea7f8c0
...
@@ -90,17 +90,17 @@ def train():
...
@@ -90,17 +90,17 @@ def train():
else
:
else
:
exe
=
base_exe
exe
=
base_exe
random_sizes
=
[]
random_sizes
=
[
cfg
.
input_size
]
if
cfg
.
random_shape
:
if
cfg
.
random_shape
:
random_sizes
=
[
32
*
i
for
i
in
range
(
10
,
20
)]
random_sizes
=
[
32
*
i
for
i
in
range
(
10
,
20
)]
mixup_iter
=
cfg
.
max_iter
-
cfg
.
start_iter
-
cfg
.
no_mixup
_iter
random_shape_iter
=
cfg
.
max_iter
-
cfg
.
start_iter
-
cfg
.
tune
_iter
if
cfg
.
use_pyreader
:
if
cfg
.
use_pyreader
:
train_reader
=
reader
.
train
(
input_size
,
batch_size
=
int
(
hyperparams
[
'batch'
])
/
devices_num
,
shuffle
=
True
,
mixup_iter
=
mixup_iter
,
random_sizes
=
random_sizes
,
interval
=
10
,
pyreader_num
=
devices_num
,
use_multiprocessing
=
cfg
.
use_multiprocess
)
train_reader
=
reader
.
train
(
input_size
,
batch_size
=
int
(
hyperparams
[
'batch'
])
/
devices_num
,
shuffle
=
True
,
random_shape_iter
=
random_shape_iter
,
random_sizes
=
random_sizes
,
interval
=
10
,
pyreader_num
=
devices_num
)
py_reader
=
model
.
py_reader
py_reader
=
model
.
py_reader
py_reader
.
decorate_paddle_reader
(
train_reader
)
py_reader
.
decorate_paddle_reader
(
train_reader
)
else
:
else
:
train_reader
=
reader
.
train
(
input_size
,
batch_size
=
int
(
hyperparams
[
'batch'
]),
shuffle
=
True
,
mixup_iter
=
mixup_iter
,
random_sizes
=
random_sizes
,
interval
=
10
,
use_multiprocessing
=
cfg
.
use_multiprocess
)
train_reader
=
reader
.
train
(
input_size
,
batch_size
=
int
(
hyperparams
[
'batch'
]),
shuffle
=
True
,
random_shape_iter
=
random_shape_iter
,
random_sizes
=
random_sizes
,
interval
=
10
)
feeder
=
fluid
.
DataFeeder
(
place
=
place
,
feed_list
=
model
.
feeds
())
feeder
=
fluid
.
DataFeeder
(
place
=
place
,
feed_list
=
model
.
feeds
())
def
save_model
(
postfix
):
def
save_model
(
postfix
):
...
@@ -150,6 +150,7 @@ def train():
...
@@ -150,6 +150,7 @@ def train():
snapshot_loss
=
0
snapshot_loss
=
0
snapshot_time
=
0
snapshot_time
=
0
for
iter_id
,
data
in
enumerate
(
train_reader
()):
for
iter_id
,
data
in
enumerate
(
train_reader
()):
print
(
len
(
data
),
data
[
0
][
0
].
shape
)
iter_id
+=
cfg
.
start_iter
iter_id
+=
cfg
.
start_iter
prev_start_time
=
start_time
prev_start_time
=
start_time
start_time
=
time
.
time
()
start_time
=
time
.
time
()
...
...
fluid/PaddleCV/yolov3/utility.py
浏览文件 @
eea7f8c0
...
@@ -104,19 +104,16 @@ def parse_args():
...
@@ -104,19 +104,16 @@ def parse_args():
add_arg
(
'class_num'
,
int
,
80
,
"Class number."
)
add_arg
(
'class_num'
,
int
,
80
,
"Class number."
)
add_arg
(
'data_dir'
,
str
,
'dataset/coco'
,
"The data root path."
)
add_arg
(
'data_dir'
,
str
,
'dataset/coco'
,
"The data root path."
)
add_arg
(
'use_pyreader'
,
bool
,
True
,
"Use pyreader."
)
add_arg
(
'use_pyreader'
,
bool
,
True
,
"Use pyreader."
)
add_arg
(
'use_multiprocess'
,
bool
,
True
,
"Use multiprocessing for train reader."
)
add_arg
(
'use_profile'
,
bool
,
False
,
"Whether use profiler."
)
add_arg
(
'use_profile'
,
bool
,
False
,
"Whether use profiler."
)
add_arg
(
'start_iter'
,
int
,
0
,
"Start iteration."
)
add_arg
(
'start_iter'
,
int
,
0
,
"Start iteration."
)
#SOLVER
#SOLVER
add_arg
(
'learning_rate'
,
float
,
0.001
,
"Learning rate."
)
add_arg
(
'learning_rate'
,
float
,
0.001
,
"Learning rate."
)
add_arg
(
'max_iter'
,
int
,
500200
,
"Iter number."
)
add_arg
(
'max_iter'
,
int
,
500200
,
"Iter number."
)
add_arg
(
'snapshot_iter'
,
int
,
2000
,
"Save model every snapshot stride."
)
add_arg
(
'snapshot_iter'
,
int
,
2000
,
"Save model every snapshot stride."
)
# add_arg('log_window', int, 20, "Log smooth window, set 1 for debug, set 20 for train.")
# TRAIN TEST INFER
# TRAIN TEST INFER
add_arg
(
'input_size'
,
int
,
608
,
"Image input size of YOLOv3."
)
add_arg
(
'input_size'
,
int
,
608
,
"Image input size of YOLOv3."
)
add_arg
(
'random_shape'
,
bool
,
True
,
"Resize to random shape for train reader."
)
add_arg
(
'random_shape'
,
bool
,
True
,
"Resize to random shape for train reader."
)
add_arg
(
'label_smooth'
,
bool
,
False
,
"Use label smooth in class label."
)
add_arg
(
'tune_iter'
,
int
,
200
,
"Disable random shape in last N iter."
)
add_arg
(
'no_mixup_iter'
,
int
,
500200
,
"Disable mixup in last N iter."
)
add_arg
(
'valid_thresh'
,
float
,
0.005
,
"Valid confidence score for NMS."
)
add_arg
(
'valid_thresh'
,
float
,
0.005
,
"Valid confidence score for NMS."
)
add_arg
(
'nms_thresh'
,
float
,
0.45
,
"NMS threshold."
)
add_arg
(
'nms_thresh'
,
float
,
0.45
,
"NMS threshold."
)
add_arg
(
'nms_topk'
,
int
,
400
,
"The number of boxes to perform NMS."
)
add_arg
(
'nms_topk'
,
int
,
400
,
"The number of boxes to perform NMS."
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录