eval.py 5.1 KB
Newer Older
X
xiaoting 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
D
Dun 已提交
17
import os
D
Dun 已提交
18 19 20
if 'FLAGS_fraction_of_gpu_memory_to_use' not in os.environ:
    os.environ['FLAGS_fraction_of_gpu_memory_to_use'] = '0.98'
os.environ['FLAGS_enable_parallel_graph'] = '1'
D
Dun 已提交
21 22 23 24 25 26 27 28 29

import paddle
import paddle.fluid as fluid
import numpy as np
import argparse
from reader import CityscapeDataset
import reader
import models
import sys
D
Dun 已提交
30
import utility
D
Dun 已提交
31

D
Dun 已提交
32 33
parser = argparse.ArgumentParser()
add_arg = lambda *args: utility.add_arguments(*args, argparser=parser)
D
Dun 已提交
34

D
Dun 已提交
35 36 37 38 39 40 41
# yapf: disable
add_arg('total_step',           int,    -1,     "Number of the step to be evaluated, -1 for full evaluation.")
add_arg('init_weights_path',    str,    None,   "Path of the weights to evaluate.")
add_arg('dataset_path',         str,    None,   "Cityscape dataset path.")
add_arg('use_gpu',              bool,   True,   "Whether use GPU or CPU.")
add_arg('num_classes',          int,    19,     "Number of classes.")
add_arg('use_py_reader',        bool,   True,   "Use py_reader.")
42
add_arg('use_multiprocessing',  bool,   False, "Use multiprocessing.")
D
Dun 已提交
43
add_arg('norm_type',            str,    'bn',   "Normalization type, should be 'bn' or 'gn'.")
D
Dun 已提交
44
#yapf: enable
D
Dun 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60


def mean_iou(pred, label):
    label = fluid.layers.elementwise_min(
        label, fluid.layers.assign(np.array(
            [num_classes], dtype=np.int32)))
    label_ignore = (label == num_classes).astype('int32')
    label_nignore = (label != num_classes).astype('int32')

    pred = pred * label_nignore + label_ignore * num_classes

    miou, wrong, correct = fluid.layers.mean_iou(pred, label, num_classes + 1)
    return miou, wrong, correct


def load_model():
D
Dun 已提交
61
    if os.path.isdir(args.init_weights_path):
D
Dun 已提交
62 63 64 65 66 67 68 69 70 71
        fluid.io.load_params(
            exe, dirname=args.init_weights_path, main_program=tp)
    else:
        fluid.io.load_params(
            exe, dirname="", filename=args.init_weights_path, main_program=tp)


CityscapeDataset = reader.CityscapeDataset

args = parser.parse_args()
72
utility.check_gpu(args.use_gpu)
D
Dun 已提交
73 74 75

models.clean()
models.is_train = False
D
Dun 已提交
76
models.default_norm_type = args.norm_type
D
Dun 已提交
77 78 79 80 81 82 83 84 85 86
deeplabv3p = models.deeplabv3p

image_shape = [1025, 2049]
eval_shape = [1024, 2048]

sp = fluid.Program()
tp = fluid.Program()
batch_size = 1
reader.default_config['crop_size'] = -1
reader.default_config['shuffle'] = False
D
Dun 已提交
87
num_classes = args.num_classes
D
Dun 已提交
88 89

with fluid.program_guard(tp, sp):
D
Dun 已提交
90 91 92 93 94 95 96 97 98
    if args.use_py_reader:
        py_reader = fluid.layers.py_reader(capacity=64,
                                        shapes=[[1, 3, 0, 0], [1] + eval_shape],
                                        dtypes=['float32', 'int32'])
        img, label = fluid.layers.read_file(py_reader)
    else:
        img = fluid.layers.data(name='img', shape=[3, 0, 0], dtype='float32')
        label = fluid.layers.data(name='label', shape=eval_shape, dtype='int32')

D
Dun 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
    img = fluid.layers.resize_bilinear(img, image_shape)
    logit = deeplabv3p(img)
    logit = fluid.layers.resize_bilinear(logit, eval_shape)
    pred = fluid.layers.argmax(logit, axis=1).astype('int32')
    miou, out_wrong, out_correct = mean_iou(pred, label)

tp = tp.clone(True)

place = fluid.CPUPlace()
if args.use_gpu:
    place = fluid.CUDAPlace(0)
exe = fluid.Executor(place)
exe.run(sp)

if args.init_weights_path:
114
    print("load from:", args.init_weights_path)
D
Dun 已提交
115 116 117 118 119 120 121 122
    load_model()

dataset = CityscapeDataset(args.dataset_path, 'val')
if args.total_step == -1:
    total_step = len(dataset.label_files)
else:
    total_step = args.total_step

123
batches = dataset.get_batch_generator(batch_size, total_step, use_multiprocessing=args.use_multiprocessing)
D
Dun 已提交
124
if args.use_py_reader:
125
    py_reader.decorate_tensor_provider(lambda :[ (yield b[0],b[1]) for b in batches])
D
Dun 已提交
126
    py_reader.start()
D
Dun 已提交
127 128 129 130 131

sum_iou = 0
all_correct = np.array([0], dtype=np.int64)
all_wrong = np.array([0], dtype=np.int64)

D
Dun 已提交
132 133 134 135 136 137 138 139 140 141 142
for i in range(total_step):
    if not args.use_py_reader:
        _, imgs, labels, names = next(batches)
        result = exe.run(tp,
                         feed={'img': imgs,
                               'label': labels},
                         fetch_list=[pred, miou, out_wrong, out_correct])
    else:
        result = exe.run(tp,
                         fetch_list=[pred, miou, out_wrong, out_correct])

D
Dun 已提交
143 144 145 146 147 148
    wrong = result[2][:-1] + all_wrong
    right = result[3][:-1] + all_correct
    all_wrong = wrong.copy()
    all_correct = right.copy()
    mp = (wrong + right) != 0
    miou2 = np.mean((right[mp] * 1.0 / (right[mp] + wrong[mp])))
149
    print('step: %s, mIoU: %s' % (i + 1, miou2))
150 151

print('eval done!')