# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os if 'FLAGS_fraction_of_gpu_memory_to_use' not in os.environ: os.environ['FLAGS_fraction_of_gpu_memory_to_use'] = '0.98' os.environ['FLAGS_enable_parallel_graph'] = '1' import paddle import paddle.fluid as fluid import numpy as np import argparse from reader import CityscapeDataset import reader import models import sys import utility parser = argparse.ArgumentParser() add_arg = lambda *args: utility.add_arguments(*args, argparser=parser) # yapf: disable add_arg('total_step', int, -1, "Number of the step to be evaluated, -1 for full evaluation.") add_arg('init_weights_path', str, None, "Path of the weights to evaluate.") add_arg('dataset_path', str, None, "Cityscape dataset path.") add_arg('use_gpu', bool, True, "Whether use GPU or CPU.") add_arg('num_classes', int, 19, "Number of classes.") add_arg('use_py_reader', bool, True, "Use py_reader.") add_arg('use_multiprocessing', bool, False, "Use multiprocessing.") add_arg('norm_type', str, 'bn', "Normalization type, should be 'bn' or 'gn'.") #yapf: enable def mean_iou(pred, label): label = fluid.layers.elementwise_min( label, fluid.layers.assign(np.array( [num_classes], dtype=np.int32))) label_ignore = (label == num_classes).astype('int32') label_nignore = (label != num_classes).astype('int32') pred = pred * label_nignore + label_ignore * num_classes miou, wrong, correct = fluid.layers.mean_iou(pred, label, num_classes + 1) return miou, wrong, correct def load_model(): if os.path.isdir(args.init_weights_path): fluid.io.load_params( exe, dirname=args.init_weights_path, main_program=tp) else: fluid.io.load_params( exe, dirname="", filename=args.init_weights_path, main_program=tp) CityscapeDataset = reader.CityscapeDataset args = parser.parse_args() utility.check_gpu(args.use_gpu) models.clean() models.is_train = False models.default_norm_type = args.norm_type deeplabv3p = models.deeplabv3p image_shape = [1025, 2049] eval_shape = [1024, 2048] sp = fluid.Program() tp = fluid.Program() batch_size = 1 reader.default_config['crop_size'] = -1 reader.default_config['shuffle'] = False num_classes = args.num_classes with fluid.program_guard(tp, sp): if args.use_py_reader: py_reader = fluid.layers.py_reader(capacity=64, shapes=[[1, 3, 0, 0], [1] + eval_shape], dtypes=['float32', 'int32']) img, label = fluid.layers.read_file(py_reader) else: img = fluid.layers.data(name='img', shape=[3, 0, 0], dtype='float32') label = fluid.layers.data(name='label', shape=eval_shape, dtype='int32') img = fluid.layers.resize_bilinear(img, image_shape) logit = deeplabv3p(img) logit = fluid.layers.resize_bilinear(logit, eval_shape) pred = fluid.layers.argmax(logit, axis=1).astype('int32') miou, out_wrong, out_correct = mean_iou(pred, label) tp = tp.clone(True) place = fluid.CPUPlace() if args.use_gpu: place = fluid.CUDAPlace(0) exe = fluid.Executor(place) exe.run(sp) if args.init_weights_path: print("load from:", args.init_weights_path) load_model() dataset = CityscapeDataset(args.dataset_path, 'val') if args.total_step == -1: total_step = len(dataset.label_files) else: total_step = args.total_step batches = dataset.get_batch_generator(batch_size, total_step, use_multiprocessing=args.use_multiprocessing) if args.use_py_reader: py_reader.decorate_tensor_provider(lambda :[ (yield b[0],b[1]) for b in batches]) py_reader.start() sum_iou = 0 all_correct = np.array([0], dtype=np.int64) all_wrong = np.array([0], dtype=np.int64) for i in range(total_step): if not args.use_py_reader: _, imgs, labels, names = next(batches) result = exe.run(tp, feed={'img': imgs, 'label': labels}, fetch_list=[pred, miou, out_wrong, out_correct]) else: result = exe.run(tp, fetch_list=[pred, miou, out_wrong, out_correct]) wrong = result[2][:-1] + all_wrong right = result[3][:-1] + all_correct all_wrong = wrong.copy() all_correct = right.copy() mp = (wrong + right) != 0 miou2 = np.mean((right[mp] * 1.0 / (right[mp] + wrong[mp]))) print('step: %s, mIoU: %s' % (i + 1, miou2)) print('eval done!')