eval.py 3.8 KB
Newer Older
X
xiaoting 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
L
Leon 已提交
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
import os
import numpy as np
import time
import sys
import paddle
import paddle.fluid as fluid
import models
import reader
import argparse
import functools
from utils import add_arguments, print_arguments, accuracy
import math
import sys
reload(sys)
sys.setdefaultencoding('utf-8')

parser = argparse.ArgumentParser(description=__doc__)
# yapf: disable
add_arg = functools.partial(add_arguments, argparser=parser)
add_arg('batch_size',       int,  32,                    "Minibatch size.")
add_arg('use_gpu',          bool, True,                 "Whether to use GPU or not.")
add_arg('class_dim',        int,  5000,                 "Class number.")
add_arg('image_shape',      str,  "3,224,224",          "Input image size")
add_arg('pretrained_model', str,  None,                 "Whether to use pretrained model.")
add_arg('model',            str,  "ResNeXt101_32x4d",   "Set the network to use.")
add_arg('img_list',         str,  "None",               "list of valset.")
add_arg('img_path',         str,  "NOne",               "path of valset.")
# yapf: enable

model_list = [m for m in dir(models) if "__" not in m]


def eval(args):
    # parameters from arguments
    class_dim = args.class_dim
    model_name = args.model
    pretrained_model = args.pretrained_model
    image_shape = [int(m) for m in args.image_shape.split(",")]

    assert model_name in model_list, "{} is not in lists: {}".format(args.model,
                                                                     model_list)

    image = fluid.layers.data(name='image', shape=image_shape, dtype='float32')

    # model definition
    model = models.__dict__[model_name]()

    if model_name is "GoogleNet":
        out, _, _ = model.net(input=image, class_dim=class_dim)
    else:
        out = model.net(input=image, class_dim=class_dim)

    test_program = fluid.default_main_program().clone(for_test=True)

    fetch_list = [out.name]

    place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace()
    exe = fluid.Executor(place)
    exe.run(fluid.default_startup_program())

    if pretrained_model:

        def if_exist(var):
            return os.path.exists(os.path.join(pretrained_model, var.name))

        fluid.io.load_vars(exe, pretrained_model, predicate=if_exist)


    test_batch_size = args.batch_size

    img_size = image_shape[1]
    test_reader = paddle.batch(reader.test(args, img_size), batch_size=test_batch_size)
    feeder = fluid.DataFeeder(place=place, feed_list=[image])

    targets = []
    with open(args.img_list, 'r') as f:
        for line in f.readlines():
            targets.append(line.strip().split()[-1])
    targets = np.array(targets, dtype=np.int)

    preds = []
    TOPK = 5

    for batch_id, data in enumerate(test_reader()):
        all_result = exe.run(test_program,
                         fetch_list=fetch_list,
                         feed=feeder.feed(data))
        pred_label = np.argsort(-all_result[0], 1)[:,:5]
        print("Test-{0}".format(batch_id))
        preds.append(pred_label)
    preds = np.vstack(preds)
    top1, top5 = accuracy(targets, preds)
    print("top1:{:.4f} top5:{:.4f}".format(top1,top5))

def main():
    args = parser.parse_args()
    print_arguments(args)
    eval(args)


if __name__ == '__main__':
    main()