# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import numpy as np import time import sys import paddle import paddle.fluid as fluid import models import reader import argparse import functools from utils import add_arguments, print_arguments, accuracy import math import sys reload(sys) sys.setdefaultencoding('utf-8') parser = argparse.ArgumentParser(description=__doc__) # yapf: disable add_arg = functools.partial(add_arguments, argparser=parser) add_arg('batch_size', int, 32, "Minibatch size.") add_arg('use_gpu', bool, True, "Whether to use GPU or not.") add_arg('class_dim', int, 5000, "Class number.") add_arg('image_shape', str, "3,224,224", "Input image size") add_arg('pretrained_model', str, None, "Whether to use pretrained model.") add_arg('model', str, "ResNeXt101_32x4d", "Set the network to use.") add_arg('img_list', str, "None", "list of valset.") add_arg('img_path', str, "NOne", "path of valset.") # yapf: enable model_list = [m for m in dir(models) if "__" not in m] def eval(args): # parameters from arguments class_dim = args.class_dim model_name = args.model pretrained_model = args.pretrained_model image_shape = [int(m) for m in args.image_shape.split(",")] assert model_name in model_list, "{} is not in lists: {}".format(args.model, model_list) image = fluid.layers.data(name='image', shape=image_shape, dtype='float32') # model definition model = models.__dict__[model_name]() if model_name is "GoogleNet": out, _, _ = model.net(input=image, class_dim=class_dim) else: out = model.net(input=image, class_dim=class_dim) test_program = fluid.default_main_program().clone(for_test=True) fetch_list = [out.name] place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace() exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) if pretrained_model: def if_exist(var): return os.path.exists(os.path.join(pretrained_model, var.name)) fluid.io.load_vars(exe, pretrained_model, predicate=if_exist) test_batch_size = args.batch_size img_size = image_shape[1] test_reader = paddle.batch(reader.test(args, img_size), batch_size=test_batch_size) feeder = fluid.DataFeeder(place=place, feed_list=[image]) targets = [] with open(args.img_list, 'r') as f: for line in f.readlines(): targets.append(line.strip().split()[-1]) targets = np.array(targets, dtype=np.int) preds = [] TOPK = 5 for batch_id, data in enumerate(test_reader()): all_result = exe.run(test_program, fetch_list=fetch_list, feed=feeder.feed(data)) pred_label = np.argsort(-all_result[0], 1)[:,:5] print("Test-{0}".format(batch_id)) preds.append(pred_label) preds = np.vstack(preds) top1, top5 = accuracy(targets, preds) print("top1:{:.4f} top5:{:.4f}".format(top1,top5)) def main(): args = parser.parse_args() print_arguments(args) eval(args) if __name__ == '__main__': main()