eval.py 3.2 KB
Newer Older
L
Leon 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
import os
import numpy as np
import time
import sys
import paddle
import paddle.fluid as fluid
import models
import reader
import argparse
import functools
from utils import add_arguments, print_arguments, accuracy
import math
import sys
reload(sys)
sys.setdefaultencoding('utf-8')

parser = argparse.ArgumentParser(description=__doc__)
# yapf: disable
add_arg = functools.partial(add_arguments, argparser=parser)
add_arg('batch_size',       int,  32,                    "Minibatch size.")
add_arg('use_gpu',          bool, True,                 "Whether to use GPU or not.")
add_arg('class_dim',        int,  5000,                 "Class number.")
add_arg('image_shape',      str,  "3,224,224",          "Input image size")
add_arg('pretrained_model', str,  None,                 "Whether to use pretrained model.")
add_arg('model',            str,  "ResNeXt101_32x4d",   "Set the network to use.")
add_arg('img_list',         str,  "None",               "list of valset.")
add_arg('img_path',         str,  "NOne",               "path of valset.")
# yapf: enable

model_list = [m for m in dir(models) if "__" not in m]


def eval(args):
    # parameters from arguments
    class_dim = args.class_dim
    model_name = args.model
    pretrained_model = args.pretrained_model
    image_shape = [int(m) for m in args.image_shape.split(",")]

    assert model_name in model_list, "{} is not in lists: {}".format(args.model,
                                                                     model_list)

    image = fluid.layers.data(name='image', shape=image_shape, dtype='float32')

    # model definition
    model = models.__dict__[model_name]()

    if model_name is "GoogleNet":
        out, _, _ = model.net(input=image, class_dim=class_dim)
    else:
        out = model.net(input=image, class_dim=class_dim)

    test_program = fluid.default_main_program().clone(for_test=True)

    fetch_list = [out.name]

    place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace()
    exe = fluid.Executor(place)
    exe.run(fluid.default_startup_program())

    if pretrained_model:

        def if_exist(var):
            return os.path.exists(os.path.join(pretrained_model, var.name))

        fluid.io.load_vars(exe, pretrained_model, predicate=if_exist)


    test_batch_size = args.batch_size

    img_size = image_shape[1]
    test_reader = paddle.batch(reader.test(args, img_size), batch_size=test_batch_size)
    feeder = fluid.DataFeeder(place=place, feed_list=[image])

    targets = []
    with open(args.img_list, 'r') as f:
        for line in f.readlines():
            targets.append(line.strip().split()[-1])
    targets = np.array(targets, dtype=np.int)

    preds = []
    TOPK = 5

    for batch_id, data in enumerate(test_reader()):
        all_result = exe.run(test_program,
                         fetch_list=fetch_list,
                         feed=feeder.feed(data))
        pred_label = np.argsort(-all_result[0], 1)[:,:5]
        print("Test-{0}".format(batch_id))
        preds.append(pred_label)
    preds = np.vstack(preds)
    top1, top5 = accuracy(targets, preds)
    print("top1:{:.4f} top5:{:.4f}".format(top1,top5))

def main():
    args = parser.parse_args()
    print_arguments(args)
    eval(args)


if __name__ == '__main__':
    main()