config.py 3.4 KB
Newer Older
Y
Yibing Liu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
"""
Deep Attention Matching Network
"""

import argparse
import six

def parse_args():
    """
    Deep Attention Matching Network Config
    """
    parser = argparse.ArgumentParser("DAM Config")

    parser.add_argument(
        '--do_train', 
        type=bool, 
        default=False, 
        help='Whether to perform training.')
    parser.add_argument(
        '--do_test', 
        type=bool, 
        default=False, 
        help='Whether to perform training.')

    parser.add_argument(
        '--batch_size',
        type=int,
        default=256,
        help='Batch size for training. (default: %(default)d)')
    parser.add_argument(
        '--num_scan_data',
        type=int,
        default=2,
        help='Number of pass for training. (default: %(default)d)')
    parser.add_argument(
        '--learning_rate',
        type=float,
        default=1e-3,
        help='Learning rate used to train. (default: %(default)f)')
    parser.add_argument(
        '--data_path',
        type=str,
        default="data/data_small.pkl",
        help='Path to training data. (default: %(default)s)')
    parser.add_argument(
        '--save_path',
        type=str,
        default="saved_models",
        help='Path to save trained models. (default: %(default)s)')
    parser.add_argument(
        '--model_path',
        type=str,
        default=None,
        help='Path to load well-trained models. (default: %(default)s)')
    parser.add_argument(
        '--use_cuda',
        action='store_true',
        help='If set, use cuda for training.')
    parser.add_argument(
        '--use_pyreader',
        action='store_true',
        help='If set, use pyreader for reading data.')
    parser.add_argument(
        '--ext_eval',
        action='store_true',
        help='If set, use MAP, MRR ect for evaluation.')
    parser.add_argument(
        '--max_turn_num',
        type=int,
        default=9,
        help='Maximum number of utterances in context.')
    parser.add_argument(
        '--max_turn_len',
        type=int,
        default=50,
        help='Maximum length of setences in turns.')
    parser.add_argument(
        '--word_emb_init',
        type=str,
        default=None,
        help='Path to the initial word embedding.')
    parser.add_argument(
        '--vocab_size',
        type=int,
        default=434512,
        help='The size of vocabulary.')
    parser.add_argument(
        '--emb_size',
        type=int,
        default=200,
        help='The dimension of word embedding.')
    parser.add_argument(
        '--_EOS_',
        type=int,
        default=28270,
        help='The id for the end of sentence in vocabulary.')
    parser.add_argument(
        '--stack_num',
        type=int,
        default=5,
        help='The number of stacked attentive modules in network.')
    parser.add_argument(
        '--channel1_num',
        type=int,
        default=32,
        help="The channels' number of the 1st conv3d layer's output.")
    parser.add_argument(
        '--channel2_num',
        type=int,
        default=16,
        help="The channels' number of the 2nd conv3d layer's output.")
    args = parser.parse_args()
    return args


def print_arguments(args):
    """
    Print Config
    """
    print('-----------  Configuration Arguments -----------')
    for arg, value in sorted(six.iteritems(vars(args))):
        print('%s: %s' % (arg, value))
    print('------------------------------------------------')