""" Deep Attention Matching Network """ import argparse import six def parse_args(): """ Deep Attention Matching Network Config """ parser = argparse.ArgumentParser("DAM Config") parser.add_argument( '--do_train', type=bool, default=False, help='Whether to perform training.') parser.add_argument( '--do_test', type=bool, default=False, help='Whether to perform training.') parser.add_argument( '--batch_size', type=int, default=256, help='Batch size for training. (default: %(default)d)') parser.add_argument( '--num_scan_data', type=int, default=2, help='Number of pass for training. (default: %(default)d)') parser.add_argument( '--learning_rate', type=float, default=1e-3, help='Learning rate used to train. (default: %(default)f)') parser.add_argument( '--data_path', type=str, default="data/data_small.pkl", help='Path to training data. (default: %(default)s)') parser.add_argument( '--save_path', type=str, default="saved_models", help='Path to save trained models. (default: %(default)s)') parser.add_argument( '--model_path', type=str, default=None, help='Path to load well-trained models. (default: %(default)s)') parser.add_argument( '--use_cuda', action='store_true', help='If set, use cuda for training.') parser.add_argument( '--use_pyreader', action='store_true', help='If set, use pyreader for reading data.') parser.add_argument( '--ext_eval', action='store_true', help='If set, use MAP, MRR ect for evaluation.') parser.add_argument( '--max_turn_num', type=int, default=9, help='Maximum number of utterances in context.') parser.add_argument( '--max_turn_len', type=int, default=50, help='Maximum length of setences in turns.') parser.add_argument( '--word_emb_init', type=str, default=None, help='Path to the initial word embedding.') parser.add_argument( '--vocab_size', type=int, default=434512, help='The size of vocabulary.') parser.add_argument( '--emb_size', type=int, default=200, help='The dimension of word embedding.') parser.add_argument( '--_EOS_', type=int, default=28270, help='The id for the end of sentence in vocabulary.') parser.add_argument( '--stack_num', type=int, default=5, help='The number of stacked attentive modules in network.') parser.add_argument( '--channel1_num', type=int, default=32, help="The channels' number of the 1st conv3d layer's output.") parser.add_argument( '--channel2_num', type=int, default=16, help="The channels' number of the 2nd conv3d layer's output.") args = parser.parse_args() return args def print_arguments(args): """ Print Config """ print('----------- Configuration Arguments -----------') for arg, value in sorted(six.iteritems(vars(args))): print('%s: %s' % (arg, value)) print('------------------------------------------------')