train.py 21.5 KB
Newer Older
1
import os
2
import time
3 4
import argparse
import ast
5
import numpy as np
6
import multiprocessing
Y
ying 已提交
7

8
import paddle
L
Luo Tao 已提交
9
import paddle.fluid as fluid
Y
ying 已提交
10

11
from model import transformer, position_encoding_init
12
from optim import LearningRateScheduler
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
from config import *
import reader


def parse_args():
    parser = argparse.ArgumentParser("Training for Transformer.")
    parser.add_argument(
        "--src_vocab_fpath",
        type=str,
        required=True,
        help="The path of vocabulary file of source language.")
    parser.add_argument(
        "--trg_vocab_fpath",
        type=str,
        required=True,
        help="The path of vocabulary file of target language.")
    parser.add_argument(
        "--train_file_pattern",
        type=str,
        required=True,
        help="The pattern to match training data files.")
    parser.add_argument(
        "--val_file_pattern",
        type=str,
        help="The pattern to match validation data files.")
    parser.add_argument(
        "--use_token_batch",
        type=ast.literal_eval,
        default=True,
        help="The flag indicating whether to "
        "produce batch data according to token number.")
    parser.add_argument(
        "--batch_size",
        type=int,
47
        default=2048,
48
        help="The number of sequences contained in a mini-batch, or the maximum "
49 50 51
        "number of tokens (include paddings) contained in a mini-batch. Note "
        "that this represents the number on single device and the actual batch "
        "size for multi-devices will multiply the device number.")
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
    parser.add_argument(
        "--pool_size",
        type=int,
        default=10000,
        help="The buffer size to pool data.")
    parser.add_argument(
        "--sort_type",
        default="pool",
        choices=("global", "pool", "none"),
        help="The grain to sort by length: global for all instances; pool for "
        "instances in pool; none for no sort.")
    parser.add_argument(
        "--shuffle",
        type=ast.literal_eval,
        default=True,
        help="The flag indicating whether to shuffle instances in each pass.")
    parser.add_argument(
        "--shuffle_batch",
        type=ast.literal_eval,
        default=True,
        help="The flag indicating whether to shuffle the data batches.")
    parser.add_argument(
        "--special_token",
        type=str,
        default=["<s>", "<e>", "<unk>"],
        nargs=3,
        help="The <bos>, <eos> and <unk> tokens in the dictionary.")
79 80 81 82 83 84 85 86 87 88 89 90 91
    parser.add_argument(
        "--use_wordpiece",
        type=ast.literal_eval,
        default=False,
        help="The flag indicating if the data is wordpiece data. The EN-FR "
        "data we provided is wordpiece data.")
    parser.add_argument(
        "--token_delimiter",
        type=str,
        default=" ",
        help="The delimiter used to split tokens in source or target sentences. "
        "For EN-DE BPE data we provided, use spaces as token delimiter.; "
        "For EN-FR wordpiece data we provided, use '\x01' as token delimiter.")
92 93 94 95 96
    parser.add_argument(
        'opts',
        help='See config.py for all options',
        default=None,
        nargs=argparse.REMAINDER)
97 98 99 100 101 102 103 104 105 106 107
    parser.add_argument(
        '--local',
        type=ast.literal_eval,
        default=True,
        help='Whether to run as local mode.')
    parser.add_argument(
        '--device',
        type=str,
        default='GPU',
        choices=['CPU', 'GPU'],
        help="The device type.")
Q
Qiao Longfei 已提交
108 109
    parser.add_argument(
        '--sync', type=ast.literal_eval, default=True, help="sync mode.")
110

111
    args = parser.parse_args()
112 113 114 115 116 117 118 119 120 121 122
    # Append args related to dict
    src_dict = reader.DataReader.load_dict(args.src_vocab_fpath)
    trg_dict = reader.DataReader.load_dict(args.trg_vocab_fpath)
    dict_args = [
        "src_vocab_size", str(len(src_dict)), "trg_vocab_size",
        str(len(trg_dict)), "bos_idx", str(src_dict[args.special_token[0]]),
        "eos_idx", str(src_dict[args.special_token[1]]), "unk_idx",
        str(src_dict[args.special_token[2]])
    ]
    merge_cfg_from_list(args.opts + dict_args,
                        [TrainTaskConfig, ModelHyperParams])
123
    return args
124 125


126 127 128 129
def pad_batch_data(insts,
                   pad_idx,
                   n_head,
                   is_target=False,
130
                   is_label=False,
131
                   return_attn_bias=True,
132 133
                   return_max_len=True,
                   return_num_token=False):
134 135
    """
    Pad the instances to the max sequence length in batch, and generate the
136 137 138 139
    corresponding position data and attention bias.
    """
    return_list = []
    max_len = max(len(inst) for inst in insts)
140 141
    num_token = reduce(lambda x, y: x + y,
                       [len(inst) for inst in insts]) if return_num_token else 0
G
guosheng 已提交
142 143 144 145
    # Any token included in dict can be used to pad, since the paddings' loss
    # will be masked out by weights and make no effect on parameter gradients.
    inst_data = np.array(
        [inst + [pad_idx] * (max_len - len(inst)) for inst in insts])
146
    return_list += [inst_data.astype("int64").reshape([-1, 1])]
147 148 149 150 151 152 153 154 155
    if is_label:  # label weight
        inst_weight = np.array(
            [[1.] * len(inst) + [0.] * (max_len - len(inst)) for inst in insts])
        return_list += [inst_weight.astype("float32").reshape([-1, 1])]
    else:  # position data
        inst_pos = np.array([
            range(1, len(inst) + 1) + [0] * (max_len - len(inst))
            for inst in insts
        ])
156 157 158 159 160 161
        return_list += [inst_pos.astype("int64").reshape([-1, 1])]
    if return_attn_bias:
        if is_target:
            # This is used to avoid attention on paddings and subsequent
            # words.
            slf_attn_bias_data = np.ones((inst_data.shape[0], max_len, max_len))
162 163
            slf_attn_bias_data = np.triu(slf_attn_bias_data,
                                         1).reshape([-1, 1, max_len, max_len])
164 165 166 167 168 169 170 171 172 173 174 175 176
            slf_attn_bias_data = np.tile(slf_attn_bias_data,
                                         [1, n_head, 1, 1]) * [-1e9]
        else:
            # This is used to avoid attention on paddings.
            slf_attn_bias_data = np.array([[0] * len(inst) + [-1e9] *
                                           (max_len - len(inst))
                                           for inst in insts])
            slf_attn_bias_data = np.tile(
                slf_attn_bias_data.reshape([-1, 1, 1, max_len]),
                [1, n_head, max_len, 1])
        return_list += [slf_attn_bias_data.astype("float32")]
    if return_max_len:
        return_list += [max_len]
177 178
    if return_num_token:
        return_list += [num_token]
179 180 181
    return return_list if len(return_list) > 1 else return_list[0]


182 183
def prepare_batch_input(insts, data_input_names, util_input_names, src_pad_idx,
                        trg_pad_idx, n_head, d_model):
184 185
    """
    Put all padded data needed by training into a dict.
186
    """
187
    src_word, src_pos, src_slf_attn_bias, src_max_len = pad_batch_data(
G
guosheng 已提交
188
        [inst[0] for inst in insts], src_pad_idx, n_head, is_target=False)
189
    trg_word, trg_pos, trg_slf_attn_bias, trg_max_len = pad_batch_data(
G
guosheng 已提交
190
        [inst[1] for inst in insts], trg_pad_idx, n_head, is_target=True)
191 192
    trg_src_attn_bias = np.tile(src_slf_attn_bias[:, :, ::src_max_len, :],
                                [1, 1, trg_max_len, 1]).astype("float32")
193 194

    # These shape tensors are used in reshape_op.
195 196
    src_data_shape = np.array([-1, src_max_len, d_model], dtype="int32")
    trg_data_shape = np.array([-1, trg_max_len, d_model], dtype="int32")
G
guosheng 已提交
197 198 199
    src_slf_attn_pre_softmax_shape = np.array(
        [-1, src_slf_attn_bias.shape[-1]], dtype="int32")
    src_slf_attn_post_softmax_shape = np.array(
200
        [-1] + list(src_slf_attn_bias.shape[1:]), dtype="int32")
G
guosheng 已提交
201 202 203
    trg_slf_attn_pre_softmax_shape = np.array(
        [-1, trg_slf_attn_bias.shape[-1]], dtype="int32")
    trg_slf_attn_post_softmax_shape = np.array(
204
        [-1] + list(trg_slf_attn_bias.shape[1:]), dtype="int32")
G
guosheng 已提交
205 206 207
    trg_src_attn_pre_softmax_shape = np.array(
        [-1, trg_src_attn_bias.shape[-1]], dtype="int32")
    trg_src_attn_post_softmax_shape = np.array(
208
        [-1] + list(trg_src_attn_bias.shape[1:]), dtype="int32")
209

210
    lbl_word, lbl_weight, num_token = pad_batch_data(
211 212 213 214 215 216
        [inst[2] for inst in insts],
        trg_pad_idx,
        n_head,
        is_target=False,
        is_label=True,
        return_attn_bias=False,
217 218 219 220 221 222 223
        return_max_len=False,
        return_num_token=True)

    data_input_dict = dict(
        zip(data_input_names, [
            src_word, src_pos, src_slf_attn_bias, trg_word, trg_pos,
            trg_slf_attn_bias, trg_src_attn_bias, lbl_word, lbl_weight
224
        ]))
225 226 227 228 229 230 231 232 233
    util_input_dict = dict(
        zip(util_input_names, [
            src_data_shape, src_slf_attn_pre_softmax_shape,
            src_slf_attn_post_softmax_shape, trg_data_shape,
            trg_slf_attn_pre_softmax_shape, trg_slf_attn_post_softmax_shape,
            trg_src_attn_pre_softmax_shape, trg_src_attn_post_softmax_shape
        ]))
    return data_input_dict, util_input_dict, np.asarray(
        [num_token], dtype="float32")
234 235


Q
Qiao Longfei 已提交
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
def read_multiple(reader, count, clip_last=True):
    """
    Stack data from reader for multi-devices.
    """

    def __impl__():
        res = []
        for item in reader():
            res.append(item)
            if len(res) == count:
                yield res
                res = []
        if len(res) == count:
            yield res
        elif not clip_last:
            data = []
            for item in res:
                data += item
            if len(data) > count:
                inst_num_per_part = len(data) // count
                yield [
                    data[inst_num_per_part * i:inst_num_per_part * (i + 1)]
                    for i in range(count)
                ]

    return __impl__


def split_data(data, num_part):
    """
    Split data for each device.
    """
    if len(data) == num_part:
        return data
    data = data[0]
    inst_num_per_part = len(data) // num_part
    return [
        data[inst_num_per_part * i:inst_num_per_part * (i + 1)]
        for i in range(num_part)
    ]


def test_context(train_progm, avg_cost, train_exe, dev_count, data_input_names,
                 util_input_names, sum_cost, token_num):
    # Context to do validation.
    test_program = train_progm.clone()
    with fluid.program_guard(test_program):
        test_program = fluid.io.get_inference_program([avg_cost])

    val_data = reader.DataReader(
        src_vocab_fpath=args.src_vocab_fpath,
        trg_vocab_fpath=args.trg_vocab_fpath,
        fpattern=args.val_file_pattern,
289
        token_delimiter=args.token_delimiter,
Q
Qiao Longfei 已提交
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
        use_token_batch=args.use_token_batch,
        batch_size=args.batch_size * (1 if args.use_token_batch else dev_count),
        pool_size=args.pool_size,
        sort_type=args.sort_type,
        start_mark=args.special_token[0],
        end_mark=args.special_token[1],
        unk_mark=args.special_token[2],
        # count start and end tokens out
        max_length=ModelHyperParams.max_length - 2,
        clip_last_batch=False,
        shuffle=False,
        shuffle_batch=False)

    test_exe = fluid.ParallelExecutor(
        use_cuda=TrainTaskConfig.use_gpu,
        main_program=test_program,
        share_vars_from=train_exe)

    def test(exe=test_exe):
        test_total_cost = 0
        test_total_token = 0
        test_data = read_multiple(
            reader=val_data.batch_generator,
            count=dev_count if args.use_token_batch else 1)
        for batch_id, data in enumerate(test_data()):
            feed_list = []
            for place_id, data_buffer in enumerate(
                    split_data(
                        data, num_part=dev_count)):
                data_input_dict, util_input_dict, _ = prepare_batch_input(
                    data_buffer, data_input_names, util_input_names,
                    ModelHyperParams.eos_idx, ModelHyperParams.eos_idx,
                    ModelHyperParams.n_head, ModelHyperParams.d_model)
                feed_list.append(
                    dict(data_input_dict.items() + util_input_dict.items()))

            outs = exe.run(feed=feed_list,
                           fetch_list=[sum_cost.name, token_num.name])
            sum_cost_val, token_num_val = np.array(outs[0]), np.array(outs[1])
            test_total_cost += sum_cost_val.sum()
            test_total_token += token_num_val.sum()
        test_avg_cost = test_total_cost / test_total_token
        test_ppl = np.exp([min(test_avg_cost, 100)])
        return test_avg_cost, test_ppl

    return test


def train_loop(exe, train_progm, dev_count, sum_cost, avg_cost, lr_scheduler,
               token_num, predict):
    # Initialize the parameters.
    if TrainTaskConfig.ckpt_path:
        fluid.io.load_persistables(exe, TrainTaskConfig.ckpt_path)
        lr_scheduler.current_steps = TrainTaskConfig.start_step
    else:
        print "init fluid.framework.default_startup_program"
        exe.run(fluid.framework.default_startup_program())

    train_data = reader.DataReader(
        src_vocab_fpath=args.src_vocab_fpath,
        trg_vocab_fpath=args.trg_vocab_fpath,
        fpattern=args.train_file_pattern,
352
        token_delimiter=args.token_delimiter,
Q
Qiao Longfei 已提交
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
        use_token_batch=args.use_token_batch,
        batch_size=args.batch_size * (1 if args.use_token_batch else dev_count),
        pool_size=args.pool_size,
        sort_type=args.sort_type,
        shuffle=args.shuffle,
        shuffle_batch=args.shuffle_batch,
        start_mark=args.special_token[0],
        end_mark=args.special_token[1],
        unk_mark=args.special_token[2],
        # count start and end tokens out
        max_length=ModelHyperParams.max_length - 2,
        clip_last_batch=False)
    train_data = read_multiple(
        reader=train_data.batch_generator,
        count=dev_count if args.use_token_batch else 1)

    build_strategy = fluid.BuildStrategy()
    # Since the token number differs among devices, customize gradient scale to
    # use token average cost among multi-devices. and the gradient scale is
    # `1 / token_number` for average cost.
    build_strategy.gradient_scale_strategy = fluid.BuildStrategy.GradientScaleStrategy.Customized
    train_exe = fluid.ParallelExecutor(
        use_cuda=TrainTaskConfig.use_gpu,
        loss_name=sum_cost.name,
        main_program=train_progm,
        build_strategy=build_strategy)

    data_input_names = encoder_data_input_fields + decoder_data_input_fields[:
                                                                             -1] + label_data_input_fields
    util_input_names = encoder_util_input_fields + decoder_util_input_fields

    if args.val_file_pattern is not None:
        test = test_context(train_progm, avg_cost, train_exe, dev_count,
                            data_input_names, util_input_names, sum_cost,
                            token_num)

    init = False
    for pass_id in xrange(TrainTaskConfig.pass_num):
        pass_start_time = time.time()
        for batch_id, data in enumerate(train_data()):
            feed_list = []
            total_num_token = 0
            for place_id, data_buffer in enumerate(
                    split_data(
                        data, num_part=dev_count)):
                data_input_dict, util_input_dict, num_token = prepare_batch_input(
                    data_buffer, data_input_names, util_input_names,
                    ModelHyperParams.eos_idx, ModelHyperParams.eos_idx,
                    ModelHyperParams.n_head, ModelHyperParams.d_model)
                total_num_token += num_token
                feed_kv_pairs = data_input_dict.items() + util_input_dict.items(
                )
                if args.local:
                    lr_rate = lr_scheduler.update_learning_rate()
                    feed_kv_pairs += {
                        lr_scheduler.learning_rate.name: lr_rate
                    }.items()
                feed_list.append(dict(feed_kv_pairs))

                if not init:
                    for pos_enc_param_name in pos_enc_param_names:
                        pos_enc = position_encoding_init(
                            ModelHyperParams.max_length + 1,
                            ModelHyperParams.d_model)
                        feed_list[place_id][pos_enc_param_name] = pos_enc
            for feed_dict in feed_list:
                feed_dict[sum_cost.name + "@GRAD"] = 1. / total_num_token
            outs = train_exe.run(fetch_list=[sum_cost.name, token_num.name],
                                 feed=feed_list)
            sum_cost_val, token_num_val = np.array(outs[0]), np.array(outs[1])
            total_sum_cost = sum_cost_val.sum(
            )  # sum the cost from multi-devices
            total_token_num = token_num_val.sum()
            total_avg_cost = total_sum_cost / total_token_num
            print("epoch: %d, batch: %d, sum loss: %f, avg loss: %f, ppl: %f" %
                  (pass_id, batch_id, total_sum_cost, total_avg_cost,
                   np.exp([min(total_avg_cost, 100)])))
            init = True
        # Validate and save the model for inference.
        print("epoch: %d, " % pass_id +
              ("val avg loss: %f, val ppl: %f, " % test()
               if args.val_file_pattern is not None else "") + "consumed %fs" %
              (time.time() - pass_start_time))
        fluid.io.save_persistables(
            exe,
            os.path.join(TrainTaskConfig.ckpt_dir,
                         "pass_" + str(pass_id) + ".checkpoint"))
        fluid.io.save_inference_model(
            os.path.join(TrainTaskConfig.model_dir,
                         "pass_" + str(pass_id) + ".infer.model"),
            data_input_names[:-2] + util_input_names, [predict], exe)


446 447 448 449 450 451
def train(args):
    # priority: ENV > args > config
    is_local = os.getenv("PADDLE_IS_LOCAL", "1")
    if is_local == '0':
        args.local = False
    print args
452

453 454
    if args.device == 'CPU':
        TrainTaskConfig.use_gpu = False
G
guosheng 已提交
455

456
    training_role = os.getenv("TRAINING_ROLE", "TRAINER")
G
guosheng 已提交
457

458 459 460 461 462 463 464 465
    if training_role == "PSERVER" or (not TrainTaskConfig.use_gpu):
        place = fluid.CPUPlace()
        dev_count = int(os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
    else:
        place = fluid.CUDAPlace(0)
        dev_count = fluid.core.get_cuda_device_count()

    exe = fluid.Executor(place)
466

G
guosheng 已提交
467
    sum_cost, avg_cost, predict, token_num = transformer(
G
guosheng 已提交
468
        ModelHyperParams.src_vocab_size, ModelHyperParams.trg_vocab_size,
G
guosheng 已提交
469
        ModelHyperParams.max_length + 1, ModelHyperParams.n_layer,
G
guosheng 已提交
470 471
        ModelHyperParams.n_head, ModelHyperParams.d_key,
        ModelHyperParams.d_value, ModelHyperParams.d_model,
472
        ModelHyperParams.d_inner_hid, ModelHyperParams.dropout,
G
guosheng 已提交
473
        ModelHyperParams.weight_sharing, TrainTaskConfig.label_smooth_eps)
Q
Qiao Longfei 已提交
474 475 476 477
    lr_scheduler = LearningRateScheduler(ModelHyperParams.d_model,
                                         TrainTaskConfig.warmup_steps,
                                         TrainTaskConfig.learning_rate)

478 479 480 481 482 483 484
    if args.local:
        optimizer = fluid.optimizer.Adam(
            learning_rate=lr_scheduler.learning_rate,
            beta1=TrainTaskConfig.beta1,
            beta2=TrainTaskConfig.beta2,
            epsilon=TrainTaskConfig.eps)
        optimizer.minimize(sum_cost)
Q
Qiao Longfei 已提交
485 486 487
    elif args.sync == False:
        optimizer = fluid.optimizer.SGD(0.003)
        optimizer.minimize(sum_cost)
488
    else:
489 490 491 492 493 494 495 496 497 498 499 500 501 502
        lr_decay = fluid.layers\
         .learning_rate_scheduler\
         .noam_decay(ModelHyperParams.d_model,
            TrainTaskConfig.warmup_steps)

        optimizer = fluid.optimizer.Adam(
            learning_rate=lr_decay,
            beta1=TrainTaskConfig.beta1,
            beta2=TrainTaskConfig.beta2,
            epsilon=TrainTaskConfig.eps)
        optimizer.minimize(sum_cost)

    if args.local:
        print("local start_up:")
Q
Qiao Longfei 已提交
503 504 505
        train_loop(exe,
                   fluid.default_main_program(), dev_count, sum_cost, avg_cost,
                   lr_scheduler, token_num, predict)
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
    else:
        port = os.getenv("PADDLE_PORT", "6174")
        pserver_ips = os.getenv("PADDLE_PSERVERS")  # ip,ip...
        eplist = []
        for ip in pserver_ips.split(","):
            eplist.append(':'.join([ip, port]))
        pserver_endpoints = ",".join(eplist)  # ip:port,ip:port...
        trainers = int(os.getenv("PADDLE_TRAINERS_NUM", "0"))
        current_endpoint = os.getenv("POD_IP") + ":" + port
        trainer_id = int(os.getenv("PADDLE_TRAINER_ID"))
        t = fluid.DistributeTranspiler()
        t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers)

        if training_role == "PSERVER":
            current_endpoint = os.getenv("POD_IP") + ":" + os.getenv(
                "PADDLE_PORT")
            if not current_endpoint:
                print("need env SERVER_ENDPOINT")
                exit(1)
            pserver_prog = t.get_pserver_program(current_endpoint)
            pserver_startup = t.get_startup_program(current_endpoint,
                                                    pserver_prog)

            print "psserver begin run"
            with open('pserver_startup.desc', 'w') as f:
                f.write(str(pserver_startup))
            with open('pserver_prog.desc', 'w') as f:
                f.write(str(pserver_prog))
            exe.run(pserver_startup)
            exe.run(pserver_prog)
        elif training_role == "TRAINER":

            trainer_prog = t.get_trainer_program()
            with open('trainer_prog.desc', 'w') as f:
                f.write(str(trainer_prog))
Q
Qiao Longfei 已提交
541 542
            train_loop(exe, trainer_prog, dev_count, sum_cost, avg_cost,
                       lr_scheduler, token_num, predict)
543 544
        else:
            print("environment var TRAINER_ROLE should be TRAINER os PSERVER")
545 546 547


if __name__ == "__main__":
548 549
    args = parse_args()
    train(args)