mask_rcnn_se154_vd_fpn_s1x.yml 2.7 KB
Newer Older
1 2 3 4 5 6
architecture: MaskRCNN
train_feed: MaskRCNNTrainFeed
eval_feed: MaskRCNNEvalFeed
test_feed: MaskRCNNTestFeed
max_iters: 260000
snapshot_iter: 10000
7
use_gpu: true
8 9 10
log_smooth_window: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/SE154_vd_pretrained.tar
11
weights: output/mask_rcnn_se154_vd_fpn_s1x/model_final/
12
metric: COCO
13
num_classes: 81
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

MaskRCNN:
  backbone: SENet
  fpn: FPN
  rpn_head: FPNRPNHead
  roi_extractor: FPNRoIAlign
  bbox_head: BBoxHead
  bbox_assigner: BBoxAssigner

SENet:
  depth: 152
  feature_maps: [2, 3, 4, 5]
  freeze_at: 2
  group_width: 4
  groups: 64
  norm_type: affine_channel
30
  variant: d
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

FPN:
  max_level: 6
  min_level: 2
  num_chan: 256
  spatial_scale: [0.03125, 0.0625, 0.125, 0.25]

FPNRPNHead:
  anchor_generator:
    aspect_ratios: [0.5, 1.0, 2.0]
    variance: [1.0, 1.0, 1.0, 1.0]
  anchor_start_size: 32
  max_level: 6
  min_level: 2
  num_chan: 256
  rpn_target_assign:
    rpn_batch_size_per_im: 256
    rpn_fg_fraction: 0.5
    rpn_negative_overlap: 0.3
    rpn_positive_overlap: 0.7
    rpn_straddle_thresh: 0.0
  train_proposal:
    min_size: 0.0
    nms_thresh: 0.7
    pre_nms_top_n: 2000
56
    post_nms_top_n: 2000
57 58 59 60
  test_proposal:
    min_size: 0.0
    nms_thresh: 0.7
    pre_nms_top_n: 1000
61
    post_nms_top_n: 1000
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105

FPNRoIAlign:
  canconical_level: 4
  canonical_size: 224
  max_level: 5
  min_level: 2
  box_resolution: 7
  sampling_ratio: 2
  mask_resolution: 14

MaskHead:
  dilation: 1
  num_chan_reduced: 256
  num_convs: 4
  resolution: 28

BBoxAssigner:
  batch_size_per_im: 512
  bbox_reg_weights: [0.1, 0.1, 0.2, 0.2]
  bg_thresh_hi: 0.5
  bg_thresh_lo: 0.0
  fg_fraction: 0.25
  fg_thresh: 0.5

MaskAssigner:
  resolution: 28

BBoxHead:
  head: TwoFCHead
  nms:
    keep_top_k: 100
    nms_threshold: 0.5
    score_threshold: 0.05

TwoFCHead:
  num_chan: 1024

LearningRate:
  base_lr: 0.01
  schedulers:
  - !PiecewiseDecay
    gamma: 0.1
    milestones: [200000, 240000]
  - !LinearWarmup
106 107
    start_factor: 0.1
    steps: 1000
108 109 110 111 112 113 114 115 116 117 118 119 120

OptimizerBuilder:
  optimizer:
    momentum: 0.9
    type: Momentum
  regularizer:
    factor: 0.0001
    type: L2

MaskRCNNTrainFeed:
  # batch size per device
  batch_size: 1
  dataset:
121
    dataset_dir: dataset/coco
122 123
    image_dir: train2017
    annotation: annotations/instances_train2017.json
Y
Yang Zhang 已提交
124 125 126
  batch_transforms:
  - !PadBatch
    pad_to_stride: 32
127 128 129 130 131
  num_workers: 2

MaskRCNNEvalFeed:
  batch_size: 1
  dataset:
132
    dataset_dir: dataset/coco
133 134
    annotation: annotations/instances_val2017.json
    image_dir: val2017
Y
Yang Zhang 已提交
135 136 137
  batch_transforms:
  - !PadBatch
    pad_to_stride: 32
138 139 140 141
  num_workers: 2

MaskRCNNTestFeed:
  batch_size: 1
Y
Yang Zhang 已提交
142
  dataset:
143
    annotation: dataset/coco/annotations/instances_val2017.json
144 145 146 147
  batch_transforms:
  - !PadBatch
    pad_to_stride: 32
  num_workers: 2