mask_rcnn_se154_vd_fpn_s1x.yml 2.8 KB
Newer Older
1 2 3 4 5 6
architecture: MaskRCNN
train_feed: MaskRCNNTrainFeed
eval_feed: MaskRCNNEvalFeed
test_feed: MaskRCNNTestFeed
max_iters: 260000
snapshot_iter: 10000
7
use_gpu: true
8 9 10
log_smooth_window: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/SE154_vd_pretrained.tar
11
weights: output/mask_rcnn_se154_vd_fpn_s1x/model_final/
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
metric: COCO

MaskRCNN:
  backbone: SENet
  fpn: FPN
  rpn_head: FPNRPNHead
  roi_extractor: FPNRoIAlign
  bbox_head: BBoxHead
  bbox_assigner: BBoxAssigner

SENet:
  depth: 152
  feature_maps: [2, 3, 4, 5]
  freeze_at: 2
  group_width: 4
  groups: 64
  norm_type: affine_channel
29
  variant: d
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

FPN:
  max_level: 6
  min_level: 2
  num_chan: 256
  spatial_scale: [0.03125, 0.0625, 0.125, 0.25]

FPNRPNHead:
  anchor_generator:
    aspect_ratios: [0.5, 1.0, 2.0]
    variance: [1.0, 1.0, 1.0, 1.0]
  anchor_start_size: 32
  max_level: 6
  min_level: 2
  num_chan: 256
  rpn_target_assign:
    rpn_batch_size_per_im: 256
    rpn_fg_fraction: 0.5
    rpn_negative_overlap: 0.3
    rpn_positive_overlap: 0.7
    rpn_straddle_thresh: 0.0
  train_proposal:
    min_size: 0.0
    nms_thresh: 0.7
    pre_nms_top_n: 2000
55
    post_nms_top_n: 2000
56 57 58 59
  test_proposal:
    min_size: 0.0
    nms_thresh: 0.7
    pre_nms_top_n: 1000
60
    post_nms_top_n: 1000
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122

FPNRoIAlign:
  canconical_level: 4
  canonical_size: 224
  max_level: 5
  min_level: 2
  box_resolution: 7
  sampling_ratio: 2
  mask_resolution: 14

MaskHead:
  dilation: 1
  num_chan_reduced: 256
  num_classes: 81
  num_convs: 4
  resolution: 28

BBoxAssigner:
  batch_size_per_im: 512
  bbox_reg_weights: [0.1, 0.1, 0.2, 0.2]
  bg_thresh_hi: 0.5
  bg_thresh_lo: 0.0
  fg_fraction: 0.25
  fg_thresh: 0.5
  num_classes: 81

MaskAssigner:
  resolution: 28

BBoxHead:
  head: TwoFCHead
  nms:
    keep_top_k: 100
    nms_threshold: 0.5
    score_threshold: 0.05
  num_classes: 81

TwoFCHead:
  num_chan: 1024

LearningRate:
  base_lr: 0.01
  schedulers:
  - !PiecewiseDecay
    gamma: 0.1
    milestones: [200000, 240000]
  - !LinearWarmup
    start_factor: 0.3333333333333333
    steps: 500

OptimizerBuilder:
  optimizer:
    momentum: 0.9
    type: Momentum
  regularizer:
    factor: 0.0001
    type: L2

MaskRCNNTrainFeed:
  # batch size per device
  batch_size: 1
  dataset:
123
    dataset_dir: dataset/coco 
124 125
    image_dir: train2017
    annotation: annotations/instances_train2017.json
Y
Yang Zhang 已提交
126 127 128
  batch_transforms:
  - !PadBatch
    pad_to_stride: 32
129 130 131 132 133
  num_workers: 2

MaskRCNNEvalFeed:
  batch_size: 1
  dataset:
134
    dataset_dir: dataset/coco
135 136
    annotation: annotations/instances_val2017.json
    image_dir: val2017
Y
Yang Zhang 已提交
137 138 139
  batch_transforms:
  - !PadBatch
    pad_to_stride: 32
140 141 142 143
  num_workers: 2

MaskRCNNTestFeed:
  batch_size: 1
Y
Yang Zhang 已提交
144 145
  dataset:
    annotation: annotations/instances_val2017.json
146 147 148 149
  batch_transforms:
  - !PadBatch
    pad_to_stride: 32
  num_workers: 2