train.py 6.6 KB
Newer Older
1 2 3
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
D
Dun 已提交
4 5 6 7 8 9 10 11 12 13
import os
os.environ['FLAGS_fraction_of_gpu_memory_to_use'] = '0.98'

import paddle
import paddle.fluid as fluid
import numpy as np
import argparse
from reader import CityscapeDataset
import reader
import models
C
ccmeteorljh 已提交
14
import time
D
Dun 已提交
15

D
Dun 已提交
16

D
Dun 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
def add_argument(name, type, default, help):
    parser.add_argument('--' + name, default=default, type=type, help=help)


def add_arguments():
    add_argument('batch_size', int, 2,
                 "The number of images in each batch during training.")
    add_argument('train_crop_size', int, 769,
                 "'Image crop size during training.")
    add_argument('base_lr', float, 0.0001,
                 "The base learning rate for model training.")
    add_argument('total_step', int, 90000, "Number of the training step.")
    add_argument('init_weights_path', str, None,
                 "Path of the initial weights in paddlepaddle format.")
    add_argument('save_weights_path', str, None,
                 "Path of the saved weights during training.")
    add_argument('dataset_path', str, None, "Cityscape dataset path.")
    add_argument('parallel', bool, False, "using ParallelExecutor.")
    add_argument('use_gpu', bool, True, "Whether use GPU or CPU.")
D
Dun 已提交
36
    add_argument('num_classes', int, 19, "Number of classes.")
Z
add ce  
zhengya01 已提交
37
    parser.add_argument('--enable_ce', action='store_true', help='If set, run the task with continuous evaluation logs.')
D
Dun 已提交
38 39 40


def load_model():
D
Dun 已提交
41 42 43 44 45
    myvars = [
        x for x in tp.list_vars()
        if isinstance(x, fluid.framework.Parameter) and x.name.find('logit') ==
        -1
    ]
D
Dun 已提交
46
    if args.init_weights_path.endswith('/'):
D
Dun 已提交
47 48 49 50 51
        if args.num_classes == 19:
            fluid.io.load_params(
                exe, dirname=args.init_weights_path, main_program=tp)
        else:
            fluid.io.load_vars(exe, dirname=args.init_weights_path, vars=myvars)
D
Dun 已提交
52
    else:
D
Dun 已提交
53 54 55 56 57 58
        if args.num_classes == 19:
            fluid.io.load_params(
                exe, dirname=args.init_weights_path, main_program=tp)
        else:
            fluid.io.load_vars(
                exe, dirname="", filename=args.init_weights_path, vars=myvars)
D
Dun 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87


def save_model():
    if args.save_weights_path.endswith('/'):
        fluid.io.save_params(
            exe, dirname=args.save_weights_path, main_program=tp)
    else:
        fluid.io.save_params(
            exe, dirname="", filename=args.save_weights_path, main_program=tp)


def loss(logit, label):
    label_nignore = (label < num_classes).astype('float32')
    label = fluid.layers.elementwise_min(
        label,
        fluid.layers.assign(np.array(
            [num_classes - 1], dtype=np.int32)))
    logit = fluid.layers.transpose(logit, [0, 2, 3, 1])
    logit = fluid.layers.reshape(logit, [-1, num_classes])
    label = fluid.layers.reshape(label, [-1, 1])
    label = fluid.layers.cast(label, 'int64')
    label_nignore = fluid.layers.reshape(label_nignore, [-1, 1])
    loss = fluid.layers.softmax_with_cross_entropy(logit, label)
    loss = loss * label_nignore
    no_grad_set.add(label_nignore.name)
    no_grad_set.add(label.name)
    return loss, label_nignore


Z
add ce  
zhengya01 已提交
88 89 90 91 92 93 94 95
def get_cards(args):
    if args.enable_ce:
        cards = os.environ.get('CUDA_VISIBLE_DEVICES')
        num = len(cards.split(","))
        return num
    else:
        return args.num_devices

D
Dun 已提交
96 97 98 99 100 101 102 103 104 105
CityscapeDataset = reader.CityscapeDataset
parser = argparse.ArgumentParser()

add_arguments()

args = parser.parse_args()

models.clean()
models.bn_momentum = 0.9997
models.dropout_keep_prop = 0.9
D
Dun 已提交
106
models.label_number = args.num_classes
D
Dun 已提交
107 108 109 110
deeplabv3p = models.deeplabv3p

sp = fluid.Program()
tp = fluid.Program()
Z
add ce  
zhengya01 已提交
111 112 113 114 115 116 117

# only for ce
if args.enable_ce:
    SEED = 102
    sp.random_seed = SEED
    tp.random_seed = SEED

D
Dun 已提交
118 119 120 121 122
crop_size = args.train_crop_size
batch_size = args.batch_size
image_shape = [crop_size, crop_size]
reader.default_config['crop_size'] = crop_size
reader.default_config['shuffle'] = True
D
Dun 已提交
123
num_classes = args.num_classes
D
Dun 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
weight_decay = 0.00004

base_lr = args.base_lr
total_step = args.total_step

no_grad_set = set()

with fluid.program_guard(tp, sp):
    img = fluid.layers.data(
        name='img', shape=[3] + image_shape, dtype='float32')
    label = fluid.layers.data(name='label', shape=image_shape, dtype='int32')
    logit = deeplabv3p(img)
    pred = fluid.layers.argmax(logit, axis=1).astype('int32')
    loss, mask = loss(logit, label)
    lr = fluid.layers.polynomial_decay(
        base_lr, total_step, end_learning_rate=0, power=0.9)
    area = fluid.layers.elementwise_max(
        fluid.layers.reduce_mean(mask),
        fluid.layers.assign(np.array(
            [0.1], dtype=np.float32)))
    loss_mean = fluid.layers.reduce_mean(loss) / area

    opt = fluid.optimizer.Momentum(
        lr,
        momentum=0.9,
        regularization=fluid.regularizer.L2DecayRegularizer(
            regularization_coeff=weight_decay), )
    retv = opt.minimize(loss_mean, startup_program=sp, no_grad_set=no_grad_set)

fluid.memory_optimize(
D
Dun 已提交
154
    tp, print_log=False, skip_opt_set=set([pred.name, loss_mean.name]), level=1)
D
Dun 已提交
155 156 157 158 159 160 161 162

place = fluid.CPUPlace()
if args.use_gpu:
    place = fluid.CUDAPlace(0)
exe = fluid.Executor(place)
exe.run(sp)

if args.init_weights_path:
163
    print("load from:", args.init_weights_path)
D
Dun 已提交
164 165 166 167 168 169 170 171 172 173
    load_model()

dataset = CityscapeDataset(args.dataset_path, 'train')

if args.parallel:
    exe_p = fluid.ParallelExecutor(
        use_cuda=True, loss_name=loss_mean.name, main_program=tp)

batches = dataset.get_batch_generator(batch_size, total_step)

Z
add ce  
zhengya01 已提交
174 175 176 177
total_time = 0.0
epoch_idx = 0
train_loss = 0

D
Dun 已提交
178
for i, imgs, labels, names in batches:
Z
add ce  
zhengya01 已提交
179 180
    epoch_idx += 1
    begin_time = time.time()
C
ccmeteorljh 已提交
181
    prev_start_time = time.time()
D
Dun 已提交
182 183 184 185 186 187 188 189 190
    if args.parallel:
        retv = exe_p.run(fetch_list=[pred.name, loss_mean.name],
                         feed={'img': imgs,
                               'label': labels})
    else:
        retv = exe.run(tp,
                       feed={'img': imgs,
                             'label': labels},
                       fetch_list=[pred, loss_mean])
C
ccmeteorljh 已提交
191
    end_time = time.time()
Z
add ce  
zhengya01 已提交
192
    total_time += end_time - begin_time
D
Dun 已提交
193
    if i % 100 == 0:
194
        print("Model is saved to", args.save_weights_path)
D
Dun 已提交
195
        save_model()
D
Dun 已提交
196 197
    print("step {:d}, loss: {:.6f}, step_time_cost: {:.3f}".format(
        i, np.mean(retv[1]), end_time - prev_start_time))
D
Dun 已提交
198

Z
add ce  
zhengya01 已提交
199 200 201 202 203 204 205 206 207 208
    # only for ce
    train_loss = np.mean(retv[1])

if args.enable_ce:
    gpu_num = get_cards(args)
    print("kpis\teach_pass_duration_card%s\t%s" %
            (gpu_num, total_time / epoch_idx))
    print("kpis\ttrain_loss_card%s\t%s" %
            (gpu_num, train_loss))

209
print("Training done. Model is saved to", args.save_weights_path)
D
Dun 已提交
210
save_model()