train.py 5.8 KB
Newer Older
1 2 3
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
D
Dun 已提交
4 5 6 7 8 9 10 11 12 13
import os
os.environ['FLAGS_fraction_of_gpu_memory_to_use'] = '0.98'

import paddle
import paddle.fluid as fluid
import numpy as np
import argparse
from reader import CityscapeDataset
import reader
import models
C
ccmeteorljh 已提交
14
import time
D
Dun 已提交
15

D
Dun 已提交
16

D
Dun 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
def add_argument(name, type, default, help):
    parser.add_argument('--' + name, default=default, type=type, help=help)


def add_arguments():
    add_argument('batch_size', int, 2,
                 "The number of images in each batch during training.")
    add_argument('train_crop_size', int, 769,
                 "'Image crop size during training.")
    add_argument('base_lr', float, 0.0001,
                 "The base learning rate for model training.")
    add_argument('total_step', int, 90000, "Number of the training step.")
    add_argument('init_weights_path', str, None,
                 "Path of the initial weights in paddlepaddle format.")
    add_argument('save_weights_path', str, None,
                 "Path of the saved weights during training.")
    add_argument('dataset_path', str, None, "Cityscape dataset path.")
    add_argument('parallel', bool, False, "using ParallelExecutor.")
    add_argument('use_gpu', bool, True, "Whether use GPU or CPU.")
D
Dun 已提交
36
    add_argument('num_classes', int, 19, "Number of classes.")
D
Dun 已提交
37 38 39


def load_model():
D
Dun 已提交
40 41 42 43 44
    myvars = [
        x for x in tp.list_vars()
        if isinstance(x, fluid.framework.Parameter) and x.name.find('logit') ==
        -1
    ]
D
Dun 已提交
45
    if args.init_weights_path.endswith('/'):
D
Dun 已提交
46 47 48 49 50
        if args.num_classes == 19:
            fluid.io.load_params(
                exe, dirname=args.init_weights_path, main_program=tp)
        else:
            fluid.io.load_vars(exe, dirname=args.init_weights_path, vars=myvars)
D
Dun 已提交
51
    else:
D
Dun 已提交
52 53 54 55 56 57
        if args.num_classes == 19:
            fluid.io.load_params(
                exe, dirname=args.init_weights_path, main_program=tp)
        else:
            fluid.io.load_vars(
                exe, dirname="", filename=args.init_weights_path, vars=myvars)
D
Dun 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96


def save_model():
    if args.save_weights_path.endswith('/'):
        fluid.io.save_params(
            exe, dirname=args.save_weights_path, main_program=tp)
    else:
        fluid.io.save_params(
            exe, dirname="", filename=args.save_weights_path, main_program=tp)


def loss(logit, label):
    label_nignore = (label < num_classes).astype('float32')
    label = fluid.layers.elementwise_min(
        label,
        fluid.layers.assign(np.array(
            [num_classes - 1], dtype=np.int32)))
    logit = fluid.layers.transpose(logit, [0, 2, 3, 1])
    logit = fluid.layers.reshape(logit, [-1, num_classes])
    label = fluid.layers.reshape(label, [-1, 1])
    label = fluid.layers.cast(label, 'int64')
    label_nignore = fluid.layers.reshape(label_nignore, [-1, 1])
    loss = fluid.layers.softmax_with_cross_entropy(logit, label)
    loss = loss * label_nignore
    no_grad_set.add(label_nignore.name)
    no_grad_set.add(label.name)
    return loss, label_nignore


CityscapeDataset = reader.CityscapeDataset
parser = argparse.ArgumentParser()

add_arguments()

args = parser.parse_args()

models.clean()
models.bn_momentum = 0.9997
models.dropout_keep_prop = 0.9
D
Dun 已提交
97
models.label_number = args.num_classes
D
Dun 已提交
98 99 100 101 102 103 104 105 106
deeplabv3p = models.deeplabv3p

sp = fluid.Program()
tp = fluid.Program()
crop_size = args.train_crop_size
batch_size = args.batch_size
image_shape = [crop_size, crop_size]
reader.default_config['crop_size'] = crop_size
reader.default_config['shuffle'] = True
D
Dun 已提交
107
num_classes = args.num_classes
D
Dun 已提交
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
weight_decay = 0.00004

base_lr = args.base_lr
total_step = args.total_step

no_grad_set = set()

with fluid.program_guard(tp, sp):
    img = fluid.layers.data(
        name='img', shape=[3] + image_shape, dtype='float32')
    label = fluid.layers.data(name='label', shape=image_shape, dtype='int32')
    logit = deeplabv3p(img)
    pred = fluid.layers.argmax(logit, axis=1).astype('int32')
    loss, mask = loss(logit, label)
    lr = fluid.layers.polynomial_decay(
        base_lr, total_step, end_learning_rate=0, power=0.9)
    area = fluid.layers.elementwise_max(
        fluid.layers.reduce_mean(mask),
        fluid.layers.assign(np.array(
            [0.1], dtype=np.float32)))
    loss_mean = fluid.layers.reduce_mean(loss) / area

    opt = fluid.optimizer.Momentum(
        lr,
        momentum=0.9,
        regularization=fluid.regularizer.L2DecayRegularizer(
            regularization_coeff=weight_decay), )
    retv = opt.minimize(loss_mean, startup_program=sp, no_grad_set=no_grad_set)

fluid.memory_optimize(
D
Dun 已提交
138
    tp, print_log=False, skip_opt_set=set([pred.name, loss_mean.name]), level=1)
D
Dun 已提交
139 140 141 142 143 144 145 146

place = fluid.CPUPlace()
if args.use_gpu:
    place = fluid.CUDAPlace(0)
exe = fluid.Executor(place)
exe.run(sp)

if args.init_weights_path:
147
    print("load from:", args.init_weights_path)
D
Dun 已提交
148 149 150 151 152 153 154 155 156 157 158
    load_model()

dataset = CityscapeDataset(args.dataset_path, 'train')

if args.parallel:
    exe_p = fluid.ParallelExecutor(
        use_cuda=True, loss_name=loss_mean.name, main_program=tp)

batches = dataset.get_batch_generator(batch_size, total_step)

for i, imgs, labels, names in batches:
C
ccmeteorljh 已提交
159
    prev_start_time = time.time()
D
Dun 已提交
160 161 162 163 164 165 166 167 168
    if args.parallel:
        retv = exe_p.run(fetch_list=[pred.name, loss_mean.name],
                         feed={'img': imgs,
                               'label': labels})
    else:
        retv = exe.run(tp,
                       feed={'img': imgs,
                             'label': labels},
                       fetch_list=[pred, loss_mean])
C
ccmeteorljh 已提交
169
    end_time = time.time()
D
Dun 已提交
170
    if i % 100 == 0:
171
        print("Model is saved to", args.save_weights_path)
D
Dun 已提交
172
        save_model()
D
Dun 已提交
173 174
    print("step {:d}, loss: {:.6f}, step_time_cost: {:.3f}".format(
        i, np.mean(retv[1]), end_time - prev_start_time))
D
Dun 已提交
175

176
print("Training done. Model is saved to", args.save_weights_path)
D
Dun 已提交
177
save_model()