train.py 16.1 KB
Newer Older
P
phlrain 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import time
import os
import random
import math
24
import contextlib
P
phlrain 已提交
25 26 27 28

import paddle
import paddle.fluid as fluid
import paddle.fluid.framework as framework
29
import paddle.fluid.profiler as profiler
P
phlrain 已提交
30 31 32 33 34 35 36 37
from paddle.fluid.executor import Executor

import reader

import sys
if sys.version[0] == '2':
    reload(sys)
    sys.setdefaultencoding("utf-8")
38
sys.path.append('../')
P
phlrain 已提交
39 40 41 42
import os
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"

from args import *
43
from models.model_check import check_cuda
Y
Yibing Liu 已提交
44
from models.language_model import lm_model
45
from config import RNNConfig
P
phlrain 已提交
46 47 48 49 50 51
import logging
import pickle

SEED = 123


52 53 54 55 56 57 58 59 60
@contextlib.contextmanager
def profile_context(profile=True):
    if profile:
        with profiler.profiler('All', 'total', '/tmp/paddingrnn.profile'):
            yield
    else:
        yield


P
phlrain 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
def get_current_model_para(train_prog, train_exe):
    param_list = train_prog.block(0).all_parameters()
    param_name_list = [p.name for p in param_list]

    vals = {}
    for p_name in param_name_list:
        p_array = np.array(fluid.global_scope().find_var(p_name).get_tensor())
        vals[p_name] = p_array

    return vals


def save_para_npz(train_prog, train_exe):
    print("begin to save model to model_base")
    param_list = train_prog.block(0).all_parameters()
    param_name_list = [p.name for p in param_list]

    vals = {}
    for p_name in param_name_list:
        p_array = np.array(fluid.global_scope().find_var(p_name).get_tensor())
        vals[p_name] = p_array

    emb = vals["embedding_para"]
    print("begin to save model to model_base")
    np.savez("mode_base", **vals)


88
def main():
P
phlrain 已提交
89
    args = parse_args()
90 91 92

    check_cuda(args.use_gpu)

P
phlrain 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
    logger = logging.getLogger("lm")
    logger.setLevel(logging.INFO)
    formatter = logging.Formatter(
        '%(asctime)s - %(name)s - %(levelname)s - %(message)s')
    if args.log_path:
        file_handler = logging.FileHandler(args.log_path)
        file_handler.setLevel(logging.INFO)
        file_handler.setFormatter(formatter)
        logger.addHandler(file_handler)
    else:
        console_handler = logging.StreamHandler()
        console_handler.setLevel(logging.INFO)
        console_handler.setFormatter(formatter)
        logger.addHandler(console_handler)
    logger.info('Running with args : {}'.format(args))

109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
    config = RNNConfig(args)

    # define train program
    main_program = fluid.Program()
    startup_program = fluid.Program()
    if args.enable_ce:
        startup_program.random_seed = SEED
    with fluid.program_guard(main_program, startup_program):
        with fluid.unique_name.guard():
            res_vars = lm_model.lm_model(
                config.hidden_size,
                config.vocab_size,
                config.batch_size,
                num_layers=config.num_layers,
                num_steps=config.num_steps,
                init_scale=config.init_scale,
                dropout=config.dropout,
                rnn_model=config.rnn_model,
                use_py_reader=args.use_py_reader)

            if args.use_py_reader:
                py_reader = res_vars[-1]
                res_vars = res_vars[:-1]
            loss, last_hidden, last_cell, feed_order = res_vars

            fluid.clip.set_gradient_clip(
                clip=fluid.clip.GradientClipByGlobalNorm(
                    clip_norm=config.max_grad_norm))

            learning_rate = fluid.layers.create_global_var(
                name="learning_rate",
                shape=[1],
                value=1.0,
                dtype='float32',
                persistable=True)

            optimizer = fluid.optimizer.SGD(learning_rate=learning_rate)
            optimizer.minimize(loss)

    # define inference program
    inference_program = fluid.Program()
    inference_startup_program = fluid.Program()
    with fluid.program_guard(inference_program, inference_startup_program):
        with fluid.unique_name.guard():
            lm_model.lm_model(
                config.hidden_size,
                config.vocab_size,
                config.batch_size,
                num_layers=config.num_layers,
                num_steps=config.num_steps,
                init_scale=config.init_scale,
                dropout=config.dropout,
                rnn_model=config.rnn_model,
                use_py_reader=False)
    # Some op behaves differently for train and inference, we need to call
    # this clone function to ensure every op is right for inference.
    inference_program = inference_program.clone(for_test=True)
P
phlrain 已提交
166

Y
Yibing Liu 已提交
167
    place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace()
P
phlrain 已提交
168
    exe = Executor(place)
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
    exe.run(startup_program)

    device_count = len(fluid.cuda_places()) if args.use_gpu else len(
        fluid.cpu_places())

    exec_strategy = fluid.ExecutionStrategy()
    exec_strategy.num_threads = device_count
    exec_strategy.num_iteration_per_drop_scope = 100

    build_strategy = fluid.BuildStrategy()
    build_strategy.enable_inplace = True
    build_strategy.memory_optimize = False
    build_strategy.fuse_all_optimizer_ops = True

    if args.parallel:
        train_program = fluid.compiler.CompiledProgram(
            main_program).with_data_parallel(
                loss_name=loss.name,
                build_strategy=build_strategy,
                exec_strategy=exec_strategy)
    else:
        train_program = fluid.compiler.CompiledProgram(main_program)
P
phlrain 已提交
191 192 193 194 195 196 197

    data_path = args.data_path
    print("begin to load data")
    raw_data = reader.ptb_raw_data(data_path)
    print("finished load data")
    train_data, valid_data, test_data, _ = raw_data

198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
    def generate_init_data():
        init_hidden = np.zeros(
            (config.num_layers, config.batch_size, config.hidden_size),
            dtype='float32')
        init_cell = np.zeros(
            (config.num_layers, config.batch_size, config.hidden_size),
            dtype='float32')
        return init_hidden, init_cell

    def generate_new_lr(epoch_id=0, device_count=1):
        new_lr = config.base_learning_rate * (config.lr_decay**max(
            epoch_id + 1 - config.epoch_start_decay, 0.0))
        lr = np.ones((device_count), dtype='float32') * new_lr
        return lr

    def prepare_input(batch,
                      init_hidden=None,
                      init_cell=None,
                      epoch_id=0,
                      with_lr=True,
                      device_count=1):
P
phlrain 已提交
219
        x, y = batch
220
        x = x.reshape((-1, config.num_steps, 1))
P
phlrain 已提交
221 222
        y = y.reshape((-1, 1))

223
        res = {}
P
phlrain 已提交
224 225
        res['x'] = x
        res['y'] = y
226 227 228 229
        if init_hidden is not None:
            res['init_hidden'] = init_hidden
        if init_cell is not None:
            res['init_cell'] = init_cell
P
phlrain 已提交
230
        if with_lr:
231
            res['learning_rate'] = generate_new_lr(epoch_id, device_count)
P
phlrain 已提交
232 233 234 235 236

        return res

    def eval(data):
        # when eval the batch_size set to 1
237 238
        eval_data_iter = reader.get_data_iter(data, config.batch_size,
                                              config.num_steps)
P
phlrain 已提交
239 240
        total_loss = 0.0
        iters = 0
241
        init_hidden, init_cell = generate_init_data()
P
phlrain 已提交
242 243
        for batch_id, batch in enumerate(eval_data_iter):
            input_data_feed = prepare_input(
244
                batch, init_hidden, init_cell, epoch_id=0, with_lr=False)
P
phlrain 已提交
245
            fetch_outs = exe.run(
246
                program=inference_program,
P
phlrain 已提交
247
                feed=input_data_feed,
L
liuhongyu 已提交
248
                fetch_list=[loss.name, last_hidden.name, last_cell.name],
H
Hongyu Liu 已提交
249
                use_program_cache=False)
P
phlrain 已提交
250

251
            cost_eval = np.array(fetch_outs[0])
P
phlrain 已提交
252 253 254
            init_hidden = np.array(fetch_outs[1])
            init_cell = np.array(fetch_outs[2])

255 256
            total_loss += cost_eval
            iters += config.num_steps
P
phlrain 已提交
257 258 259 260

        ppl = np.exp(total_loss / iters)
        return ppl

261 262 263 264 265
    def get_log_interval(data_len):
        num_batchs = data_len // config.batch_size
        epoch_size = (num_batchs - 1) // config.num_steps
        log_interval = max(1, epoch_size // 10)
        return log_interval
P
phlrain 已提交
266

267 268 269 270 271
    def train_an_epoch(epoch_id, batch_times):
        # get train epoch size
        log_interval = get_log_interval(len(train_data))
        train_data_iter = reader.get_data_iter(train_data, config.batch_size,
                                               config.num_steps)
P
phlrain 已提交
272 273 274

        total_loss = 0
        iters = 0
H
Hongyu Liu 已提交
275 276

        init_hidden, init_cell = generate_init_data()
P
phlrain 已提交
277 278
        for batch_id, batch in enumerate(train_data_iter):
            input_data_feed = prepare_input(
279 280 281 282 283 284 285 286 287 288
                batch,
                init_hidden=init_hidden,
                init_cell=init_cell,
                epoch_id=epoch_id,
                with_lr=True,
                device_count=device_count)

            batch_start_time = time.time()
            fetch_outs = exe.run(train_program,
                                 feed=input_data_feed,
289 290 291 292
                                 fetch_list=[
                                     loss.name, "learning_rate",
                                     last_hidden.name, last_cell.name
                                 ],
P
phlrain 已提交
293
                                 use_program_cache=True)
294 295
            batch_time = time.time() - batch_start_time
            batch_times.append(batch_time)
P
phlrain 已提交
296 297

            cost_train = np.array(fetch_outs[0])
298
            lr = np.array(fetch_outs[1])
H
Hongyu Liu 已提交
299 300
            init_hidden = np.array(fetch_outs[2])
            init_cell = np.array(fetch_outs[3])
P
phlrain 已提交
301 302

            total_loss += cost_train
303
            iters += config.num_steps
P
phlrain 已提交
304 305
            if batch_id > 0 and batch_id % log_interval == 0:
                ppl = np.exp(total_loss / iters)
306 307 308
                print(
                    "-- Epoch:[%d]; Batch:[%d]; Time: %.5f s; ppl: %.5f, lr: %.5f"
                    % (epoch_id, batch_id, batch_time, ppl[0], lr[0]))
P
phlrain 已提交
309 310

        ppl = np.exp(total_loss / iters)
311
        return ppl
P
phlrain 已提交
312

313 314 315
    def train_an_epoch_py_reader(epoch_id, batch_times):
        # get train epoch size
        log_interval = get_log_interval(len(train_data))
P
phlrain 已提交
316

317
        init_hidden, init_cell = generate_init_data()
Z
zhengya01 已提交
318

319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
        total_loss = 0
        iters = 0

        py_reader.start()
        batch_id = 0
        try:
            while True:
                data_feeds = {}
                if batch_id == 0:
                    batch_time = 0
                    batch_start_time = time.time()
                else:
                    batch_time = time.time() - batch_start_time
                    batch_times.append(batch_time)
                    batch_start_time = time.time()

                new_lr = generate_new_lr(epoch_id, device_count)
                data_feeds['learning_rate'] = new_lr
H
Hongyu Liu 已提交
337 338
                data_feeds["init_hidden"] = init_hidden
                data_feeds["init_cell"] = init_cell
339 340 341

                fetch_outs = exe.run(train_program,
                                     feed=data_feeds,
342 343 344 345
                                     fetch_list=[
                                         loss.name, "learning_rate",
                                         last_hidden.name, last_cell.name
                                     ],
346 347 348 349
                                     use_program_cache=True)

                cost_train = np.array(fetch_outs[0])
                lr = np.array(fetch_outs[1])
350 351
                init_hidden = np.array(fetch_outs[2])
                init_cell = np.array(fetch_outs[3])
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442

                total_loss += cost_train
                iters += config.num_steps
                if batch_id > 0 and (log_interval == 0 or
                                     batch_id % log_interval == 0):
                    ppl = np.exp(total_loss / iters)
                    print(
                        "-- Epoch:[%d]; Batch:[%d]; Time: %.5f s; ppl: %.5f, lr: %.5f"
                        % (epoch_id, batch_id, batch_time, ppl[0], lr[0]))

                batch_id += 1
        except fluid.core.EOFException:
            py_reader.reset()

        batch_times.append(time.time() - batch_start_time)
        ppl = np.exp(total_loss / iters)
        return ppl

    def train():
        if args.use_py_reader:

            def data_gen():
                data_iter_size = config.batch_size // device_count
                train_batches = reader.get_data_iter(train_data, data_iter_size,
                                                     config.num_steps)
                for batch in train_batches:
                    x, y = batch
                    x = x.reshape((-1, config.num_steps, 1))
                    y = y.reshape((-1, 1))
                    yield x, y

            py_reader.decorate_tensor_provider(data_gen)

        total_time = 0.0
        for epoch_id in range(config.max_epoch):
            batch_times = []
            epoch_start_time = time.time()
            if args.use_py_reader:
                train_ppl = train_an_epoch_py_reader(epoch_id, batch_times)
            else:
                train_ppl = train_an_epoch(epoch_id, batch_times)
            epoch_time = time.time() - epoch_start_time
            total_time += epoch_time
            print(
                "\nTrain epoch:[%d]; epoch Time: %.5f; ppl: %.5f; avg_time: %.5f steps/s \n"
                % (epoch_id, epoch_time, train_ppl[0],
                   len(batch_times) / sum(batch_times)))

            # FIXME(zjl): ppl[0] increases as batch_size increases. 
            # We should find a better way to calculate ppl by normalizing batch_size. 
            if device_count == 1 and config.batch_size <= 20 and epoch_id == 0 and train_ppl[
                    0] > 1000:
                # for bad init, after first epoch, the loss is over 1000
                # no more need to continue
                print(
                    "Parameters are randomly initialized and not good this time because the loss is over 1000 after the first epoch."
                )
                print("Abort this training process and please start again.")
                return

            if epoch_id == config.max_epoch - 1 and args.enable_ce:
                # kpis
                print("ptblm\tlstm_language_model_%s_duration_card%d\t%s" %
                      (args.rnn_model, device_count,
                       total_time / config.max_epoch))
                print("ptblm\tlstm_language_model_%s_loss_card%d\t%s" %
                      (args.rnn_model, device_count, train_ppl[0]))

            # NOTE(zjl): sometimes we have not enough data for eval if batch_size is large, i.e., 2100
            # Just skip to avoid error
            def is_valid_data(data, batch_size, num_steps):
                data_len = len(data)
                batch_len = data_len // batch_size
                epoch_size = (batch_len - 1) // num_steps
                return epoch_size >= 1

            valid_data_valid = is_valid_data(valid_data, config.batch_size,
                                             config.num_steps)
            if valid_data_valid:
                valid_ppl = eval(valid_data)
                print("Valid ppl: %.5f" % valid_ppl[0])
            else:
                print(
                    'WARNING: length of valid_data is {}, which is not enough for batch_size {} and num_steps {}'.
                    format(
                        len(valid_data), config.batch_size, config.num_steps))

            save_model_dir = os.path.join(args.save_model_dir, str(epoch_id))
            fluid.io.save_persistables(
                executor=exe, dirname=save_model_dir, main_program=main_program)
            print("Saved model to: %s.\n" % save_model_dir)
Z
zhengya01 已提交
443

444 445 446
    with profile_context(args.profile):
        train()

447 448 449 450 451 452
    test_ppl = eval(test_data)
    print("Test ppl:", test_ppl[0])


if __name__ == '__main__':
    main()