checkpoint.py 9.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

20
import errno
21 22
import os
import shutil
23
import time
24
import numpy as np
25
import re
26 27 28 29 30 31 32
import paddle.fluid as fluid

from .download import get_weights_path

import logging
logger = logging.getLogger(__name__)

W
wangguanzhong 已提交
33 34 35
__all__ = [
    'load_checkpoint',
    'load_and_fusebn',
36
    'load_params',
W
wangguanzhong 已提交
37 38
    'save',
]
39 40 41 42 43 44 45 46 47 48 49


def is_url(path):
    """
    Whether path is URL.
    Args:
        path (string): URL string or not.
    """
    return path.startswith('http://') or path.startswith('https://')


50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
def _get_weight_path(path):
    env = os.environ
    if 'PADDLE_TRAINERS_NUM' in env and 'PADDLE_TRAINER_ID' in env:
        trainer_id = int(env['PADDLE_TRAINER_ID'])
        num_trainers = int(env['PADDLE_TRAINERS_NUM'])
        if num_trainers <= 1:
            path = get_weights_path(path)
        else:
            from ppdet.utils.download import map_path, WEIGHTS_HOME
            weight_path = map_path(path, WEIGHTS_HOME)
            lock_path = weight_path + '.lock'
            if not os.path.exists(weight_path):
                try:
                    os.makedirs(os.path.dirname(weight_path))
                except OSError as e:
                    if e.errno != errno.EEXIST:
                        raise
                with open(lock_path, 'w'):  # touch    
                    os.utime(lock_path, None)
                if trainer_id == 0:
                    get_weights_path(path)
                    os.remove(lock_path)
                else:
                    while os.path.exists(lock_path):
                        time.sleep(1)
            path = weight_path
    else:
        path = get_weights_path(path)
    return path


81
def load_params(exe, prog, path, ignore_params=[]):
82 83 84 85 86 87
    """
    Load model from the given path.
    Args:
        exe (fluid.Executor): The fluid.Executor object.
        prog (fluid.Program): load weight to which Program object.
        path (string): URL string or loca model path.
88
        ignore_params (bool): ignore variable to load when finetuning.
89
    """
90

91
    if is_url(path):
92
        path = _get_weights_path(path)
93 94

    if not os.path.exists(path):
95 96
        raise ValueError("Model pretrain path {} does not "
                         "exists.".format(path))
97

98
    logger.info('Loading parameters from {}...'.format(path))
99 100

    def _if_exist(var):
101 102 103 104 105 106 107 108 109 110 111 112
        do_ignore = False
        param_exist = os.path.exists(os.path.join(path, var.name))
        if len(ignore_params) > 0:
            # Parameter related to num_classes will be ignored in finetuning
            do_ignore_list = [
                bool(re.match(name, var.name)) for name in ignore_params
            ]
            do_ignore = any(do_ignore_list)
            if do_ignore and param_exist:
                logger.info('In load_params, ignore {}'.format(var.name))
        do_load = param_exist and not do_ignore
        if do_load:
113
            logger.debug('load weight {}'.format(var.name))
114
        return do_load
115 116 117 118 119 120 121 122 123 124 125 126 127

    fluid.io.load_vars(exe, path, prog, predicate=_if_exist)


def load_checkpoint(exe, prog, path):
    """
    Load model from the given path.
    Args:
        exe (fluid.Executor): The fluid.Executor object.
        prog (fluid.Program): load weight to which Program object.
        path (string): URL string or loca model path.
    """
    if is_url(path):
128
        path = _get_weights_path(path)
129 130

    if not os.path.exists(path):
131 132
        raise ValueError("Model checkpoint path {} does not "
                         "exists.".format(path))
133 134 135 136 137

    logger.info('Loading checkpoint from {}...'.format(path))
    fluid.io.load_persistables(exe, path, prog)


Q
qingqing01 已提交
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
def global_step(scope=None):
    """
    Load global step in scope.
    Args:
        scope (fluid.Scope): load global step from which scope. If None,
            from default global_scope().

    Returns:
        global step: int.
    """
    if scope is None:
        scope = fluid.global_scope()
    v = scope.find_var('@LR_DECAY_COUNTER@')
    step = np.array(v.get_tensor())[0] if v else 0
    return step


155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
def save(exe, prog, path):
    """
    Load model from the given path.
    Args:
        exe (fluid.Executor): The fluid.Executor object.
        prog (fluid.Program): save weight from which Program object.
        path (string): the path to save model.
    """
    if os.path.isdir(path):
        shutil.rmtree(path)
    logger.info('Save model to {}.'.format(path))
    fluid.io.save_persistables(exe, path, prog)


def load_and_fusebn(exe, prog, path):
    """
    Fuse params of batch norm to scale and bias.

    Args:
        exe (fluid.Executor): The fluid.Executor object.
        prog (fluid.Program): save weight from which Program object.
        path (string): the path to save model.
    """
    logger.info('Load model and fuse batch norm from {}...'.format(path))
179

180
    if is_url(path):
181
        path = _get_weights_path(path)
182

183 184 185
    if not os.path.exists(path):
        raise ValueError("Model path {} does not exists.".format(path))

186 187
    def _if_exist(var):
        b = os.path.exists(os.path.join(path, var.name))
188

189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
        if b:
            logger.debug('load weight {}'.format(var.name))
        return b

    all_vars = list(filter(_if_exist, prog.list_vars()))

    # Since the program uses affine-channel, there is no running mean and var
    # in the program, here append running mean and var.
    # NOTE, the params of batch norm should be like:
    #  x_scale
    #  x_offset
    #  x_mean
    #  x_variance
    #  x is any prefix
    mean_variances = set()
    bn_vars = []

    bn_in_path = True

    inner_prog = fluid.Program()
    inner_start_prog = fluid.Program()
210
    inner_block = inner_prog.global_block()
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
    with fluid.program_guard(inner_prog, inner_start_prog):
        for block in prog.blocks:
            ops = list(block.ops)
            if not bn_in_path:
                break
            for op in ops:
                if op.type == 'affine_channel':
                    # remove 'scale' as prefix
                    scale_name = op.input('Scale')[0]  # _scale
                    bias_name = op.input('Bias')[0]  # _offset
                    prefix = scale_name[:-5]
                    mean_name = prefix + 'mean'
                    variance_name = prefix + 'variance'

                    if not os.path.exists(os.path.join(path, mean_name)):
                        bn_in_path = False
                        break
                    if not os.path.exists(os.path.join(path, variance_name)):
                        bn_in_path = False
                        break

                    bias = block.var(bias_name)
233 234 235 236 237 238 239 240 241 242 243 244 245 246

                    mean_vb = inner_block.create_var(
                        name=mean_name,
                        type=bias.type,
                        shape=bias.shape,
                        dtype=bias.dtype,
                        persistable=True)
                    variance_vb = inner_block.create_var(
                        name=variance_name,
                        type=bias.type,
                        shape=bias.shape,
                        dtype=bias.dtype,
                        persistable=True)

247 248 249 250 251 252 253
                    mean_variances.add(mean_vb)
                    mean_variances.add(variance_vb)

                    bn_vars.append(
                        [scale_name, bias_name, mean_name, variance_name])

    if not bn_in_path:
254 255
        raise ValueError("There is no params of batch norm in model {}.".format(
            path))
256

257 258 259 260
    # load running mean and running variance on cpu place into global scope.
    place = fluid.CPUPlace()
    exe_cpu = fluid.Executor(place)
    fluid.io.load_vars(exe_cpu, path, vars=[v for v in mean_variances])
261

262
    # load params on real place into global scope.
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
    fluid.io.load_vars(exe, path, prog, vars=all_vars)

    eps = 1e-5
    for names in bn_vars:
        scale_name, bias_name, mean_name, var_name = names

        scale = fluid.global_scope().find_var(scale_name).get_tensor()
        bias = fluid.global_scope().find_var(bias_name).get_tensor()
        mean = fluid.global_scope().find_var(mean_name).get_tensor()
        var = fluid.global_scope().find_var(var_name).get_tensor()

        scale_arr = np.array(scale)
        bias_arr = np.array(bias)
        mean_arr = np.array(mean)
        var_arr = np.array(var)

        bn_std = np.sqrt(np.add(var_arr, eps))
        new_scale = np.float32(np.divide(scale_arr, bn_std))
        new_bias = bias_arr - mean_arr * new_scale

        # fuse to scale and bias in affine_channel
        scale.set(new_scale, exe.place)
        bias.set(new_bias, exe.place)