checkpoint.py 7.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

20
import errno
21 22
import os
import shutil
23
import time
24
import numpy as np
25
import re
26 27 28 29 30 31 32
import paddle.fluid as fluid

from .download import get_weights_path

import logging
logger = logging.getLogger(__name__)

W
wangguanzhong 已提交
33 34 35
__all__ = [
    'load_checkpoint',
    'load_and_fusebn',
36
    'load_params',
W
wangguanzhong 已提交
37 38
    'save',
]
39 40 41 42 43 44 45 46 47 48 49


def is_url(path):
    """
    Whether path is URL.
    Args:
        path (string): URL string or not.
    """
    return path.startswith('http://') or path.startswith('https://')


50

51
def load_params(exe, prog, path, ignore_params=[]):
52 53 54 55 56 57
    """
    Load model from the given path.
    Args:
        exe (fluid.Executor): The fluid.Executor object.
        prog (fluid.Program): load weight to which Program object.
        path (string): URL string or loca model path.
58
        ignore_params (bool): ignore variable to load when finetuning.
59
    """
60

61
    if is_url(path):
62
        path = get_weights_path(path)
63 64

    if not os.path.exists(path):
65 66
        raise ValueError("Model pretrain path {} does not "
                         "exists.".format(path))
67

68
    logger.info('Loading parameters from {}...'.format(path))
69 70

    def _if_exist(var):
71 72 73 74 75 76 77 78 79 80 81 82
        do_ignore = False
        param_exist = os.path.exists(os.path.join(path, var.name))
        if len(ignore_params) > 0:
            # Parameter related to num_classes will be ignored in finetuning
            do_ignore_list = [
                bool(re.match(name, var.name)) for name in ignore_params
            ]
            do_ignore = any(do_ignore_list)
            if do_ignore and param_exist:
                logger.info('In load_params, ignore {}'.format(var.name))
        do_load = param_exist and not do_ignore
        if do_load:
83
            logger.debug('load weight {}'.format(var.name))
84
        return do_load
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

    fluid.io.load_vars(exe, path, prog, predicate=_if_exist)


def load_checkpoint(exe, prog, path):
    """
    Load model from the given path.
    Args:
        exe (fluid.Executor): The fluid.Executor object.
        prog (fluid.Program): load weight to which Program object.
        path (string): URL string or loca model path.
    """
    if is_url(path):
        path = get_weights_path(path)

    if not os.path.exists(path):
101 102
        raise ValueError("Model checkpoint path {} does not "
                         "exists.".format(path))
103 104 105 106 107

    logger.info('Loading checkpoint from {}...'.format(path))
    fluid.io.load_persistables(exe, path, prog)


Q
qingqing01 已提交
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
def global_step(scope=None):
    """
    Load global step in scope.
    Args:
        scope (fluid.Scope): load global step from which scope. If None,
            from default global_scope().

    Returns:
        global step: int.
    """
    if scope is None:
        scope = fluid.global_scope()
    v = scope.find_var('@LR_DECAY_COUNTER@')
    step = np.array(v.get_tensor())[0] if v else 0
    return step


125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
def save(exe, prog, path):
    """
    Load model from the given path.
    Args:
        exe (fluid.Executor): The fluid.Executor object.
        prog (fluid.Program): save weight from which Program object.
        path (string): the path to save model.
    """
    if os.path.isdir(path):
        shutil.rmtree(path)
    logger.info('Save model to {}.'.format(path))
    fluid.io.save_persistables(exe, path, prog)


def load_and_fusebn(exe, prog, path):
    """
    Fuse params of batch norm to scale and bias.

    Args:
        exe (fluid.Executor): The fluid.Executor object.
        prog (fluid.Program): save weight from which Program object.
        path (string): the path to save model.
    """
    logger.info('Load model and fuse batch norm from {}...'.format(path))
149

150
    if is_url(path):
151
        path = get_weights_path(path)
152

153 154 155
    if not os.path.exists(path):
        raise ValueError("Model path {} does not exists.".format(path))

156 157
    def _if_exist(var):
        b = os.path.exists(os.path.join(path, var.name))
158

159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
        if b:
            logger.debug('load weight {}'.format(var.name))
        return b

    all_vars = list(filter(_if_exist, prog.list_vars()))

    # Since the program uses affine-channel, there is no running mean and var
    # in the program, here append running mean and var.
    # NOTE, the params of batch norm should be like:
    #  x_scale
    #  x_offset
    #  x_mean
    #  x_variance
    #  x is any prefix
    mean_variances = set()
    bn_vars = []

    bn_in_path = True

    inner_prog = fluid.Program()
    inner_start_prog = fluid.Program()
    with fluid.program_guard(inner_prog, inner_start_prog):
        for block in prog.blocks:
            ops = list(block.ops)
            if not bn_in_path:
                break
            for op in ops:
                if op.type == 'affine_channel':
                    # remove 'scale' as prefix
                    scale_name = op.input('Scale')[0]  # _scale
                    bias_name = op.input('Bias')[0]  # _offset
                    prefix = scale_name[:-5]
                    mean_name = prefix + 'mean'
                    variance_name = prefix + 'variance'

                    if not os.path.exists(os.path.join(path, mean_name)):
                        bn_in_path = False
                        break
                    if not os.path.exists(os.path.join(path, variance_name)):
                        bn_in_path = False
                        break

                    bias = block.var(bias_name)
                    mean_vb = fluid.layers.create_parameter(
                        bias.shape, bias.dtype, mean_name)
                    variance_vb = fluid.layers.create_parameter(
                        bias.shape, bias.dtype, variance_name)
                    mean_variances.add(mean_vb)
                    mean_variances.add(variance_vb)

                    bn_vars.append(
                        [scale_name, bias_name, mean_name, variance_name])

    if not bn_in_path:
213 214
        raise ValueError("There is no params of batch norm in model {}.".format(
            path))
215

216 217 218 219
    # load running mean and running variance on cpu place into global scope.
    place = fluid.CPUPlace()
    exe_cpu = fluid.Executor(place)
    fluid.io.load_vars(exe_cpu, path, vars=[v for v in mean_variances])
220

221
    # load params on real place into global scope.
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
    fluid.io.load_vars(exe, path, prog, vars=all_vars)

    eps = 1e-5
    for names in bn_vars:
        scale_name, bias_name, mean_name, var_name = names

        scale = fluid.global_scope().find_var(scale_name).get_tensor()
        bias = fluid.global_scope().find_var(bias_name).get_tensor()
        mean = fluid.global_scope().find_var(mean_name).get_tensor()
        var = fluid.global_scope().find_var(var_name).get_tensor()

        scale_arr = np.array(scale)
        bias_arr = np.array(bias)
        mean_arr = np.array(mean)
        var_arr = np.array(var)

        bn_std = np.sqrt(np.add(var_arr, eps))
        new_scale = np.float32(np.divide(scale_arr, bn_std))
        new_bias = bias_arr - mean_arr * new_scale

        # fuse to scale and bias in affine_channel
        scale.set(new_scale, exe.place)
        bias.set(new_bias, exe.place)