data.py 13.9 KB
Newer Older
1 2
"""Contains data generator for orgnaizing various audio data preprocessing
pipeline and offering data reader interface of PaddlePaddle requirements.
3 4 5 6 7 8
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import random
9
import tarfile
10
import multiprocessing
11
import numpy as np
12
import paddle.v2 as paddle
13
from threading import local
14 15 16
from data_utils import utils
from data_utils.augmentor.augmentation import AugmentationPipeline
from data_utils.featurizer.speech_featurizer import SpeechFeaturizer
17
from data_utils.speech import SpeechSegment
18 19
from data_utils.normalizer import FeatureNormalizer

W
wanghaoshuang 已提交
20 21 22 23 24
# for caching tar files info
local_data = local()
local_data.tar2info = {}
local_data.tar2object = {}

25 26 27 28

class DataGenerator(object):
    """
    DataGenerator provides basic audio data preprocessing pipeline, and offers
29
    data reader interfaces of PaddlePaddle requirements.
30

31 32
    :param vocab_filepath: Vocabulary filepath for indexing tokenized
                           transcripts.
33
    :type vocab_filepath: basestring
34 35 36 37 38 39 40
    :param mean_std_filepath: File containing the pre-computed mean and stddev.
    :type mean_std_filepath: None|basestring
    :param augmentation_config: Augmentation configuration in json string.
                                Details see AugmentationPipeline.__doc__.
    :type augmentation_config: str
    :param max_duration: Audio with duration (in seconds) greater than
                         this will be discarded.
41
    :type max_duration: float
42 43
    :param min_duration: Audio with duration (in seconds) smaller than
                         this will be discarded.
44 45 46
    :type min_duration: float
    :param stride_ms: Striding size (in milliseconds) for generating frames.
    :type stride_ms: float
47
    :param window_ms: Window size (in milliseconds) for generating frames.
48
    :type window_ms: float
49 50 51 52 53 54
    :param max_freq: Used when specgram_type is 'linear', only FFT bins
                     corresponding to frequencies between [0, max_freq] are
                     returned.
    :types max_freq: None|float
    :param specgram_type: Specgram feature type. Options: 'linear'.
    :type specgram_type: str
55 56 57
    :param use_dB_normalization: Whether to normalize the audio to -20 dB
                                before extracting the features.
    :type use_dB_normalization: bool
58 59
    :param num_threads: Number of CPU threads for processing data.
    :type num_threads: int
60 61
    :param random_seed: Random seed.
    :type random_seed: int
62 63 64 65 66 67 68 69 70 71 72
    """

    def __init__(self,
                 vocab_filepath,
                 mean_std_filepath,
                 augmentation_config='{}',
                 max_duration=float('inf'),
                 min_duration=0.0,
                 stride_ms=10.0,
                 window_ms=20.0,
                 max_freq=None,
73
                 specgram_type='linear',
74
                 use_dB_normalization=True,
75
                 num_threads=multiprocessing.cpu_count() // 2,
76 77 78 79 80 81 82 83
                 random_seed=0):
        self._max_duration = max_duration
        self._min_duration = min_duration
        self._normalizer = FeatureNormalizer(mean_std_filepath)
        self._augmentation_pipeline = AugmentationPipeline(
            augmentation_config=augmentation_config, random_seed=random_seed)
        self._speech_featurizer = SpeechFeaturizer(
            vocab_filepath=vocab_filepath,
84
            specgram_type=specgram_type,
85 86
            stride_ms=stride_ms,
            window_ms=window_ms,
87 88
            max_freq=max_freq,
            use_dB_normalization=use_dB_normalization)
89
        self._num_threads = num_threads
90 91
        self._rng = random.Random(random_seed)
        self._epoch = 0
W
wanghaoshuang 已提交
92 93 94 95
        # for caching tar files info
        self.tar2info = {}
        self.tar2object = {}

96 97 98 99
    def process_utterance(self, filename, transcript):
        """Load, augment, featurize and normalize for speech data.

        :param filename: Audio filepath
100
        :type filename: basestring | file
101 102 103
        :param transcript: Transcription text.
        :type transcript: basestring
        :return: Tuple of audio feature tensor and list of token ids for
104
                 transcription.
105 106 107 108 109 110 111 112
        :rtype: tuple of (2darray, list)
        """
        speech_segment = SpeechSegment.from_file(filename, transcript)
        self._augmentation_pipeline.transform_audio(speech_segment)
        specgram, text_ids = self._speech_featurizer.featurize(speech_segment)
        specgram = self._normalizer.apply(specgram)
        return specgram, text_ids

113 114 115
    def batch_reader_creator(self,
                             manifest_path,
                             batch_size,
116
                             min_batch_size=1,
117 118 119
                             padding_to=-1,
                             flatten=False,
                             sortagrad=False,
120
                             shuffle_method="batch_shuffle"):
121
        """
122 123
        Batch data reader creator for audio data. Return a callable generator
        function to produce batches of data.
W
wanghaoshuang 已提交
124

125 126
        Audio features within one batch will be padded with zeros to have the
        same shape, or a user-defined shape.
127

128
        :param manifest_path: Filepath of manifest for audio files.
129
        :type manifest_path: basestring
130
        :param batch_size: Number of instances in a batch.
131
        :type batch_size: int
132 133 134 135 136 137
        :param min_batch_size: Any batch with batch size smaller than this will
                               be discarded. (To be deprecated in the future.)
        :type min_batch_size: int
        :param padding_to:  If set -1, the maximun shape in the batch
                            will be used as the target shape for padding.
                            Otherwise, `padding_to` will be the target shape.
138
        :type padding_to: int
139
        :param flatten: If set True, audio features will be flatten to 1darray.
140
        :type flatten: bool
141 142
        :param sortagrad: If set True, sort the instances by audio duration
                          in the first epoch for speed up training.
143
        :type sortagrad: bool
144 145 146 147 148 149 150 151 152 153 154 155 156 157
        :param shuffle_method: Shuffle method. Options:
                                '' or None: no shuffle.
                                'instance_shuffle': instance-wise shuffle.
                                'batch_shuffle': similarly-sized instances are
                                                 put into batches, and then
                                                 batch-wise shuffle the batches.
                                                 For more details, please see
                                                 ``_batch_shuffle.__doc__``.
                                'batch_shuffle_clipped': 'batch_shuffle' with
                                                         head shift and tail
                                                         clipping. For more
                                                         details, please see
                                                         ``_batch_shuffle``.
                              If sortagrad is True, shuffle is disabled
158
                              for the first epoch.
159
        :type shuffle_method: None|str
160 161 162 163 164 165 166 167 168 169 170 171 172
        :return: Batch reader function, producing batches of data when called.
        :rtype: callable
        """

        def batch_reader():
            # read manifest
            manifest = utils.read_manifest(
                manifest_path=manifest_path,
                max_duration=self._max_duration,
                min_duration=self._min_duration)
            # sort (by duration) or batch-wise shuffle the manifest
            if self._epoch == 0 and sortagrad:
                manifest.sort(key=lambda x: x["duration"])
173 174 175 176 177 178 179 180 181
            else:
                if shuffle_method == "batch_shuffle":
                    manifest = self._batch_shuffle(
                        manifest, batch_size, clipped=False)
                elif shuffle_method == "batch_shuffle_clipped":
                    manifest = self._batch_shuffle(
                        manifest, batch_size, clipped=True)
                elif shuffle_method == "instance_shuffle":
                    self._rng.shuffle(manifest)
182
                elif shuffle_method == None:
183 184 185 186
                    pass
                else:
                    raise ValueError("Unknown shuffle method %s." %
                                     shuffle_method)
187 188 189 190 191 192 193 194
            # prepare batches
            instance_reader = self._instance_reader_creator(manifest)
            batch = []
            for instance in instance_reader():
                batch.append(instance)
                if len(batch) == batch_size:
                    yield self._padding_batch(batch, padding_to, flatten)
                    batch = []
195
            if len(batch) >= min_batch_size:
196 197 198 199 200 201 202
                yield self._padding_batch(batch, padding_to, flatten)
            self._epoch += 1

        return batch_reader

    @property
    def feeding(self):
203
        """Returns data reader's feeding dict.
W
wanghaoshuang 已提交
204

205
        :return: Data feeding dict.
W
wanghaoshuang 已提交
206
        :rtype: dict
207
        """
208 209 210 211
        return {"audio_spectrogram": 0, "transcript_text": 1}

    @property
    def vocab_size(self):
212 213 214 215 216
        """Return the vocabulary size.

        :return: Vocabulary size.
        :rtype: int
        """
217 218 219 220
        return self._speech_featurizer.vocab_size

    @property
    def vocab_list(self):
221 222 223 224 225
        """Return the vocabulary in list.

        :return: Vocabulary in list.
        :rtype: list
        """
226 227
        return self._speech_featurizer.vocab_list

W
wanghaoshuang 已提交
228
    def _parse_tar(self, file):
229 230
        """Parse a tar file to get a tarfile object
        and a map containing tarinfoes
W
wanghaoshuang 已提交
231 232 233 234 235 236 237
        """
        result = {}
        f = tarfile.open(file)
        for tarinfo in f.getmembers():
            result[tarinfo.name] = tarinfo
        return f, result

238 239 240
    def _get_file_object(self, file):
        """Get file object by file path.
        If file startwith tar, it will return a tar file object
W
wanghaoshuang 已提交
241
        and cached tar file info for next reading request.
242
        It will return file directly, if the type of file is not str.
W
wanghaoshuang 已提交
243
        """
244 245
        if file.startswith('tar:'):
            tarpath, filename = file.split(':', 1)[1].split('#', 1)
W
wanghaoshuang 已提交
246 247 248 249 250 251 252 253 254
            if 'tar2info' not in local_data.__dict__:
                local_data.tar2info = {}
            if 'tar2object' not in local_data.__dict__:
                local_data.tar2object = {}
            if tarpath not in local_data.tar2info:
                object, infoes = self._parse_tar(tarpath)
                local_data.tar2info[tarpath] = infoes
                local_data.tar2object[tarpath] = object
            return local_data.tar2object[tarpath].extractfile(
255
                local_data.tar2info[tarpath][filename])
W
wanghaoshuang 已提交
256
        else:
257
            return open(file)
258 259 260

    def _instance_reader_creator(self, manifest):
        """
261 262
        Instance reader creator. Create a callable function to produce
        instances of data.
263

264 265
        Instance: a tuple of ndarray of audio spectrogram and a list of
        token indices for transcript.
266 267 268 269
        """

        def reader():
            for instance in manifest:
270
                yield instance
271

272
        def mapper(instance):
273 274 275
            return self.process_utterance(
                self._get_file_object(instance["audio_filepath"]),
                instance["text"])
276 277 278

        return paddle.reader.xmap_readers(
            mapper, reader, self._num_threads, 1024, order=True)
279 280 281

    def _padding_batch(self, batch, padding_to=-1, flatten=False):
        """
282 283
        Padding audio features with zeros to make them have the same shape (or
        a user-defined shape) within one bach.
284

285 286 287
        If ``padding_to`` is -1, the maximun shape in the batch will be used
        as the target shape for padding. Otherwise, `padding_to` will be the
        target shape (only refers to the second axis).
288

289
        If `flatten` is True, features will be flatten to 1darray.
290 291 292 293 294 295
        """
        new_batch = []
        # get target shape
        max_length = max([audio.shape[1] for audio, text in batch])
        if padding_to != -1:
            if padding_to < max_length:
296 297
                raise ValueError("If padding_to is not -1, it should be larger "
                                 "than any instance's shape in the batch")
298 299 300 301 302 303 304 305 306 307
            max_length = padding_to
        # padding
        for audio, text in batch:
            padded_audio = np.zeros([audio.shape[0], max_length])
            padded_audio[:, :audio.shape[1]] = audio
            if flatten:
                padded_audio = padded_audio.flatten()
            new_batch.append((padded_audio, text))
        return new_batch

308
    def _batch_shuffle(self, manifest, batch_size, clipped=False):
309 310
        """Put similarly-sized instances into minibatches for better efficiency
        and make a batch-wise shuffle.
311 312 313

        1. Sort the audio clips by duration.
        2. Generate a random number `k`, k in [0, batch_size).
314 315
        3. Randomly shift `k` instances in order to create different batches
           for different epochs. Create minibatches.
316 317
        4. Shuffle the minibatches.

318
        :param manifest: Manifest contents. List of dict.
319 320 321 322
        :type manifest: list
        :param batch_size: Batch size. This size is also used for generate
                           a random number for batch shuffle.
        :type batch_size: int
323 324 325
        :param clipped: Whether to clip the heading (small shift) and trailing
                        (incomplete batch) instances.
        :type clipped: bool
326
        :return: Batch shuffled mainifest.
327 328 329 330 331 332 333
        :rtype: list
        """
        manifest.sort(key=lambda x: x["duration"])
        shift_len = self._rng.randint(0, batch_size - 1)
        batch_manifest = zip(*[iter(manifest[shift_len:])] * batch_size)
        self._rng.shuffle(batch_manifest)
        batch_manifest = list(sum(batch_manifest, ()))
334 335 336 337
        if not clipped:
            res_len = len(manifest) - shift_len - len(batch_manifest)
            batch_manifest.extend(manifest[-res_len:])
            batch_manifest.extend(manifest[0:shift_len])
338
        return batch_manifest