data.py 12.1 KB
Newer Older
1 2
"""Contains data generator for orgnaizing various audio data preprocessing
pipeline and offering data reader interface of PaddlePaddle requirements.
3 4 5 6 7 8 9
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import random
import numpy as np
10
import multiprocessing
11 12 13 14
import paddle.v2 as paddle
from data_utils import utils
from data_utils.augmentor.augmentation import AugmentationPipeline
from data_utils.featurizer.speech_featurizer import SpeechFeaturizer
15
from data_utils.speech import SpeechSegment
16 17 18 19 20 21
from data_utils.normalizer import FeatureNormalizer


class DataGenerator(object):
    """
    DataGenerator provides basic audio data preprocessing pipeline, and offers
22
    data reader interfaces of PaddlePaddle requirements.
23

24 25
    :param vocab_filepath: Vocabulary filepath for indexing tokenized
                           transcripts.
26
    :type vocab_filepath: basestring
27 28 29 30 31 32 33
    :param mean_std_filepath: File containing the pre-computed mean and stddev.
    :type mean_std_filepath: None|basestring
    :param augmentation_config: Augmentation configuration in json string.
                                Details see AugmentationPipeline.__doc__.
    :type augmentation_config: str
    :param max_duration: Audio with duration (in seconds) greater than
                         this will be discarded.
34
    :type max_duration: float
35 36
    :param min_duration: Audio with duration (in seconds) smaller than
                         this will be discarded.
37 38 39
    :type min_duration: float
    :param stride_ms: Striding size (in milliseconds) for generating frames.
    :type stride_ms: float
40
    :param window_ms: Window size (in milliseconds) for generating frames.
41
    :type window_ms: float
42 43 44 45 46 47
    :param max_freq: Used when specgram_type is 'linear', only FFT bins
                     corresponding to frequencies between [0, max_freq] are
                     returned.
    :types max_freq: None|float
    :param specgram_type: Specgram feature type. Options: 'linear'.
    :type specgram_type: str
48 49 50
    :param use_dB_normalization: Whether to normalize the audio to -20 dB
                                 before extracting the features.
    :type use_dB_normalization: bool
51 52
    :param num_threads: Number of CPU threads for processing data.
    :type num_threads: int
53 54
    :param random_seed: Random seed.
    :type random_seed: int
55 56 57 58 59 60 61 62 63 64 65
    """

    def __init__(self,
                 vocab_filepath,
                 mean_std_filepath,
                 augmentation_config='{}',
                 max_duration=float('inf'),
                 min_duration=0.0,
                 stride_ms=10.0,
                 window_ms=20.0,
                 max_freq=None,
66
                 specgram_type='linear',
67
                 use_dB_normalization=True,
68
                 num_threads=multiprocessing.cpu_count(),
69 70 71 72 73 74 75 76
                 random_seed=0):
        self._max_duration = max_duration
        self._min_duration = min_duration
        self._normalizer = FeatureNormalizer(mean_std_filepath)
        self._augmentation_pipeline = AugmentationPipeline(
            augmentation_config=augmentation_config, random_seed=random_seed)
        self._speech_featurizer = SpeechFeaturizer(
            vocab_filepath=vocab_filepath,
77
            specgram_type=specgram_type,
78 79
            stride_ms=stride_ms,
            window_ms=window_ms,
80 81
            max_freq=max_freq,
            use_dB_normalization=use_dB_normalization)
82
        self._num_threads = num_threads
83 84 85 86 87 88
        self._rng = random.Random(random_seed)
        self._epoch = 0

    def batch_reader_creator(self,
                             manifest_path,
                             batch_size,
89
                             min_batch_size=1,
90 91 92
                             padding_to=-1,
                             flatten=False,
                             sortagrad=False,
93
                             shuffle_method="batch_shuffle"):
94
        """
95 96
        Batch data reader creator for audio data. Return a callable generator
        function to produce batches of data.
97
        
98 99
        Audio features within one batch will be padded with zeros to have the
        same shape, or a user-defined shape.
100

101
        :param manifest_path: Filepath of manifest for audio files.
102
        :type manifest_path: basestring
103
        :param batch_size: Number of instances in a batch.
104
        :type batch_size: int
105 106 107 108 109 110
        :param min_batch_size: Any batch with batch size smaller than this will
                               be discarded. (To be deprecated in the future.)
        :type min_batch_size: int
        :param padding_to:  If set -1, the maximun shape in the batch
                            will be used as the target shape for padding.
                            Otherwise, `padding_to` will be the target shape.
111
        :type padding_to: int
112
        :param flatten: If set True, audio features will be flatten to 1darray.
113
        :type flatten: bool
114 115
        :param sortagrad: If set True, sort the instances by audio duration
                          in the first epoch for speed up training.
116
        :type sortagrad: bool
117 118 119 120 121 122 123 124 125 126 127 128 129 130
        :param shuffle_method: Shuffle method. Options:
                                '' or None: no shuffle.
                                'instance_shuffle': instance-wise shuffle.
                                'batch_shuffle': similarly-sized instances are
                                                 put into batches, and then
                                                 batch-wise shuffle the batches.
                                                 For more details, please see
                                                 ``_batch_shuffle.__doc__``.
                                'batch_shuffle_clipped': 'batch_shuffle' with
                                                         head shift and tail
                                                         clipping. For more
                                                         details, please see
                                                         ``_batch_shuffle``.
                              If sortagrad is True, shuffle is disabled
131
                              for the first epoch.
132
        :type shuffle_method: None|str
133 134 135 136 137 138 139 140 141 142 143 144 145
        :return: Batch reader function, producing batches of data when called.
        :rtype: callable
        """

        def batch_reader():
            # read manifest
            manifest = utils.read_manifest(
                manifest_path=manifest_path,
                max_duration=self._max_duration,
                min_duration=self._min_duration)
            # sort (by duration) or batch-wise shuffle the manifest
            if self._epoch == 0 and sortagrad:
                manifest.sort(key=lambda x: x["duration"])
146 147 148 149 150 151 152 153 154 155 156 157 158 159
            else:
                if shuffle_method == "batch_shuffle":
                    manifest = self._batch_shuffle(
                        manifest, batch_size, clipped=False)
                elif shuffle_method == "batch_shuffle_clipped":
                    manifest = self._batch_shuffle(
                        manifest, batch_size, clipped=True)
                elif shuffle_method == "instance_shuffle":
                    self._rng.shuffle(manifest)
                elif not shuffle_method:
                    pass
                else:
                    raise ValueError("Unknown shuffle method %s." %
                                     shuffle_method)
160 161 162 163 164 165 166 167
            # prepare batches
            instance_reader = self._instance_reader_creator(manifest)
            batch = []
            for instance in instance_reader():
                batch.append(instance)
                if len(batch) == batch_size:
                    yield self._padding_batch(batch, padding_to, flatten)
                    batch = []
168
            if len(batch) >= min_batch_size:
169 170 171 172 173 174 175
                yield self._padding_batch(batch, padding_to, flatten)
            self._epoch += 1

        return batch_reader

    @property
    def feeding(self):
176 177 178 179 180
        """Returns data reader's feeding dict.
        
        :return: Data feeding dict.
        :rtype: dict 
        """
181 182 183 184
        return {"audio_spectrogram": 0, "transcript_text": 1}

    @property
    def vocab_size(self):
185 186 187 188 189
        """Return the vocabulary size.

        :return: Vocabulary size.
        :rtype: int
        """
190 191 192 193
        return self._speech_featurizer.vocab_size

    @property
    def vocab_list(self):
194 195 196 197 198
        """Return the vocabulary in list.

        :return: Vocabulary in list.
        :rtype: list
        """
199 200 201
        return self._speech_featurizer.vocab_list

    def _process_utterance(self, filename, transcript):
202
        """Load, augment, featurize and normalize for speech data."""
203 204 205 206 207 208 209 210
        speech_segment = SpeechSegment.from_file(filename, transcript)
        self._augmentation_pipeline.transform_audio(speech_segment)
        specgram, text_ids = self._speech_featurizer.featurize(speech_segment)
        specgram = self._normalizer.apply(specgram)
        return specgram, text_ids

    def _instance_reader_creator(self, manifest):
        """
211 212
        Instance reader creator. Create a callable function to produce
        instances of data.
213

214 215
        Instance: a tuple of ndarray of audio spectrogram and a list of
        token indices for transcript.
216 217 218 219
        """

        def reader():
            for instance in manifest:
220
                yield instance
221

222 223 224 225 226 227
        def mapper(instance):
            return self._process_utterance(instance["audio_filepath"],
                                           instance["text"])

        return paddle.reader.xmap_readers(
            mapper, reader, self._num_threads, 1024, order=True)
228 229 230

    def _padding_batch(self, batch, padding_to=-1, flatten=False):
        """
231 232
        Padding audio features with zeros to make them have the same shape (or
        a user-defined shape) within one bach.
233

234 235 236
        If ``padding_to`` is -1, the maximun shape in the batch will be used
        as the target shape for padding. Otherwise, `padding_to` will be the
        target shape (only refers to the second axis).
237

238
        If `flatten` is True, features will be flatten to 1darray.
239 240 241 242 243 244
        """
        new_batch = []
        # get target shape
        max_length = max([audio.shape[1] for audio, text in batch])
        if padding_to != -1:
            if padding_to < max_length:
245 246
                raise ValueError("If padding_to is not -1, it should be larger "
                                 "than any instance's shape in the batch")
247 248 249 250 251 252 253 254 255 256
            max_length = padding_to
        # padding
        for audio, text in batch:
            padded_audio = np.zeros([audio.shape[0], max_length])
            padded_audio[:, :audio.shape[1]] = audio
            if flatten:
                padded_audio = padded_audio.flatten()
            new_batch.append((padded_audio, text))
        return new_batch

257
    def _batch_shuffle(self, manifest, batch_size, clipped=False):
258 259
        """Put similarly-sized instances into minibatches for better efficiency
        and make a batch-wise shuffle.
260 261 262

        1. Sort the audio clips by duration.
        2. Generate a random number `k`, k in [0, batch_size).
263 264
        3. Randomly shift `k` instances in order to create different batches
           for different epochs. Create minibatches.
265 266
        4. Shuffle the minibatches.

267
        :param manifest: Manifest contents. List of dict.
268 269 270 271
        :type manifest: list
        :param batch_size: Batch size. This size is also used for generate
                           a random number for batch shuffle.
        :type batch_size: int
272 273 274
        :param clipped: Whether to clip the heading (small shift) and trailing
                        (incomplete batch) instances.
        :type clipped: bool
275
        :return: Batch shuffled mainifest.
276 277 278 279 280 281 282
        :rtype: list
        """
        manifest.sort(key=lambda x: x["duration"])
        shift_len = self._rng.randint(0, batch_size - 1)
        batch_manifest = zip(*[iter(manifest[shift_len:])] * batch_size)
        self._rng.shuffle(batch_manifest)
        batch_manifest = list(sum(batch_manifest, ()))
283 284 285 286
        if not clipped:
            res_len = len(manifest) - shift_len - len(batch_manifest)
            batch_manifest.extend(manifest[-res_len:])
            batch_manifest.extend(manifest[0:shift_len])
287
        return batch_manifest