Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
f545367c
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
f545367c
编写于
6月 15, 2017
作者:
X
Xinghai Sun
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add shuffle type of instance_shuffle and batch_shuffle_clipped.
上级
b72aec53
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
82 addition
and
29 deletion
+82
-29
deep_speech_2/data_utils/data.py
deep_speech_2/data_utils/data.py
+38
-12
deep_speech_2/datasets/librispeech/librispeech.py
deep_speech_2/datasets/librispeech/librispeech.py
+1
-2
deep_speech_2/decoder.py
deep_speech_2/decoder.py
+2
-4
deep_speech_2/infer.py
deep_speech_2/infer.py
+5
-6
deep_speech_2/train.py
deep_speech_2/train.py
+11
-5
deep_speech_2/utils.py
deep_speech_2/utils.py
+25
-0
未找到文件。
deep_speech_2/data_utils/data.py
浏览文件 @
f545367c
...
...
@@ -80,7 +80,7 @@ class DataGenerator(object):
padding_to
=-
1
,
flatten
=
False
,
sortagrad
=
False
,
batch_shuffle
=
False
):
shuffle_method
=
"batch_shuffle"
):
"""
Batch data reader creator for audio data. Return a callable generator
function to produce batches of data.
...
...
@@ -104,12 +104,22 @@ class DataGenerator(object):
:param sortagrad: If set True, sort the instances by audio duration
in the first epoch for speed up training.
:type sortagrad: bool
:param batch_shuffle: If set True, instances are batch-wise shuffled.
For more details, please see
``_batch_shuffle.__doc__``.
If sortagrad is True, batch_shuffle is disabled
:param shuffle_method: Shuffle method. Options:
'' or None: no shuffle.
'instance_shuffle': instance-wise shuffle.
'batch_shuffle': similarly-sized instances are
put into batches, and then
batch-wise shuffle the batches.
For more details, please see
``_batch_shuffle.__doc__``.
'batch_shuffle_clipped': 'batch_shuffle' with
head shift and tail
clipping. For more
details, please see
``_batch_shuffle``.
If sortagrad is True, shuffle is disabled
for the first epoch.
:type
batch_shuffle: bool
:type
shuffle_method: None|str
:return: Batch reader function, producing batches of data when called.
:rtype: callable
"""
...
...
@@ -123,8 +133,20 @@ class DataGenerator(object):
# sort (by duration) or batch-wise shuffle the manifest
if
self
.
_epoch
==
0
and
sortagrad
:
manifest
.
sort
(
key
=
lambda
x
:
x
[
"duration"
])
elif
batch_shuffle
:
manifest
=
self
.
_batch_shuffle
(
manifest
,
batch_size
)
else
:
if
shuffle_method
==
"batch_shuffle"
:
manifest
=
self
.
_batch_shuffle
(
manifest
,
batch_size
,
clipped
=
False
)
elif
shuffle_method
==
"batch_shuffle_clipped"
:
manifest
=
self
.
_batch_shuffle
(
manifest
,
batch_size
,
clipped
=
True
)
elif
shuffle_method
==
"instance_shuffle"
:
self
.
_rng
.
shuffle
(
manifest
)
elif
not
shuffle_method
:
pass
else
:
raise
ValueError
(
"Unknown shuffle method %s."
%
shuffle_method
)
# prepare batches
instance_reader
=
self
.
_instance_reader_creator
(
manifest
)
batch
=
[]
...
...
@@ -218,7 +240,7 @@ class DataGenerator(object):
new_batch
.
append
((
padded_audio
,
text
))
return
new_batch
def
_batch_shuffle
(
self
,
manifest
,
batch_size
):
def
_batch_shuffle
(
self
,
manifest
,
batch_size
,
clipped
=
False
):
"""Put similarly-sized instances into minibatches for better efficiency
and make a batch-wise shuffle.
...
...
@@ -233,6 +255,9 @@ class DataGenerator(object):
:param batch_size: Batch size. This size is also used for generate
a random number for batch shuffle.
:type batch_size: int
:param clipped: Whether to clip the heading (small shift) and trailing
(incomplete batch) instances.
:type clipped: bool
:return: Batch shuffled mainifest.
:rtype: list
"""
...
...
@@ -241,7 +266,8 @@ class DataGenerator(object):
batch_manifest
=
zip
(
*
[
iter
(
manifest
[
shift_len
:])]
*
batch_size
)
self
.
_rng
.
shuffle
(
batch_manifest
)
batch_manifest
=
list
(
sum
(
batch_manifest
,
()))
res_len
=
len
(
manifest
)
-
shift_len
-
len
(
batch_manifest
)
batch_manifest
.
extend
(
manifest
[
-
res_len
:])
batch_manifest
.
extend
(
manifest
[
0
:
shift_len
])
if
not
clipped
:
res_len
=
len
(
manifest
)
-
shift_len
-
len
(
batch_manifest
)
batch_manifest
.
extend
(
manifest
[
-
res_len
:])
batch_manifest
.
extend
(
manifest
[
0
:
shift_len
])
return
batch_manifest
deep_speech_2/datasets/librispeech/librispeech.py
浏览文件 @
f545367c
...
...
@@ -37,8 +37,7 @@ MD5_TRAIN_CLEAN_100 = "2a93770f6d5c6c964bc36631d331a522"
MD5_TRAIN_CLEAN_360
=
"c0e676e450a7ff2f54aeade5171606fa"
MD5_TRAIN_OTHER_500
=
"d1a0fd59409feb2c614ce4d30c387708"
parser
=
argparse
.
ArgumentParser
(
description
=
'Downloads and prepare LibriSpeech dataset.'
)
parser
=
argparse
.
ArgumentParser
(
description
=
__doc__
)
parser
.
add_argument
(
"--target_dir"
,
default
=
DATA_HOME
+
"/Libri"
,
...
...
deep_speech_2/decoder.py
浏览文件 @
f545367c
...
...
@@ -8,8 +8,7 @@ from itertools import groupby
def
ctc_best_path_decode
(
probs_seq
,
vocabulary
):
"""
Best path decoding, also called argmax decoding or greedy decoding.
"""Best path decoding, also called argmax decoding or greedy decoding.
Path consisting of the most probable tokens are further post-processed to
remove consecutive repetitions and all blanks.
...
...
@@ -38,8 +37,7 @@ def ctc_best_path_decode(probs_seq, vocabulary):
def
ctc_decode
(
probs_seq
,
vocabulary
,
method
):
"""
CTC-like sequence decoding from a sequence of likelihood probablilites.
"""CTC-like sequence decoding from a sequence of likelihood probablilites.
:param probs_seq: 2-D list of probabilities over the vocabulary for each
character. Each element is a list of float probabilities
...
...
deep_speech_2/infer.py
浏览文件 @
f545367c
...
...
@@ -10,9 +10,9 @@ import paddle.v2 as paddle
from
data_utils.data
import
DataGenerator
from
model
import
deep_speech2
from
decoder
import
ctc_decode
import
utils
parser
=
argparse
.
ArgumentParser
(
description
=
'Simplified version of DeepSpeech2 inference.'
)
parser
=
argparse
.
ArgumentParser
(
description
=
__doc__
)
parser
.
add_argument
(
"--num_samples"
,
default
=
10
,
...
...
@@ -62,9 +62,7 @@ args = parser.parse_args()
def
infer
():
"""
Max-ctc-decoding for DeepSpeech2.
"""
"""Max-ctc-decoding for DeepSpeech2."""
# initialize data generator
data_generator
=
DataGenerator
(
vocab_filepath
=
args
.
vocab_filepath
,
...
...
@@ -98,7 +96,7 @@ def infer():
manifest_path
=
args
.
decode_manifest_path
,
batch_size
=
args
.
num_samples
,
sortagrad
=
False
,
batch_shuffle
=
Fals
e
)
shuffle_method
=
Non
e
)
infer_data
=
batch_reader
().
next
()
# run inference
...
...
@@ -123,6 +121,7 @@ def infer():
def
main
():
utils
.
print_arguments
(
args
)
paddle
.
init
(
use_gpu
=
args
.
use_gpu
,
trainer_count
=
1
)
infer
()
...
...
deep_speech_2/train.py
浏览文件 @
f545367c
...
...
@@ -12,6 +12,7 @@ import distutils.util
import
paddle.v2
as
paddle
from
model
import
deep_speech2
from
data_utils.data
import
DataGenerator
import
utils
parser
=
argparse
.
ArgumentParser
(
description
=
__doc__
)
parser
.
add_argument
(
...
...
@@ -51,6 +52,12 @@ parser.add_argument(
default
=
True
,
type
=
distutils
.
util
.
strtobool
,
help
=
"Use sortagrad or not. (default: %(default)s)"
)
parser
.
add_argument
(
"--shuffle_method"
,
default
=
'instance_shuffle'
,
type
=
str
,
help
=
"Shuffle method: 'instance_shuffle', 'batch_shuffle', "
"'batch_shuffle_batch'. (default: %(default)s)"
)
parser
.
add_argument
(
"--trainer_count"
,
default
=
4
,
...
...
@@ -93,9 +100,7 @@ args = parser.parse_args()
def
train
():
"""
DeepSpeech2 training.
"""
"""DeepSpeech2 training."""
# initialize data generator
def
data_generator
():
...
...
@@ -145,13 +150,13 @@ def train():
batch_size
=
args
.
batch_size
,
min_batch_size
=
args
.
trainer_count
,
sortagrad
=
args
.
use_sortagrad
if
args
.
init_model_path
is
None
else
False
,
batch_shuffle
=
True
)
shuffle_method
=
args
.
shuffle_method
)
test_batch_reader
=
test_generator
.
batch_reader_creator
(
manifest_path
=
args
.
dev_manifest_path
,
batch_size
=
args
.
batch_size
,
min_batch_size
=
1
,
# must be 1, but will have errors.
sortagrad
=
False
,
batch_shuffle
=
Fals
e
)
shuffle_method
=
Non
e
)
# create event handler
def
event_handler
(
event
):
...
...
@@ -186,6 +191,7 @@ def train():
def
main
():
utils
.
print_arguments
(
args
)
paddle
.
init
(
use_gpu
=
args
.
use_gpu
,
trainer_count
=
args
.
trainer_count
)
train
()
...
...
deep_speech_2/utils.py
0 → 100644
浏览文件 @
f545367c
"""Contains common utility functions."""
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
def
print_arguments
(
args
):
"""Print argparse's arguments.
Usage:
.. code-block:: python
parser = argparse.ArgumentParser()
parser.add_argument("name", default="Jonh", type=str, help="User name.")
args = parser.parse_args()
print_arguments(args)
:param args: Input argparse.Namespace for printing.
:type args: argparse.Namespace
"""
print
(
"----- Configuration Arguments -----"
)
for
arg
,
value
in
vars
(
args
).
iteritems
():
print
(
"%s: %s"
%
(
arg
,
value
))
print
(
"------------------------------------"
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录