image_util.py 8.9 KB
Newer Older
1 2
from PIL import Image, ImageEnhance, ImageDraw
from PIL import ImageFile
G
gaoyuan 已提交
3 4 5 6
import numpy as np
import random
import math

7 8
ImageFile.LOAD_TRUNCATED_IMAGES = True  #otherwise IOError raised image file is truncated

G
gaoyuan 已提交
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

class sampler():
    def __init__(self, max_sample, max_trial, min_scale, max_scale,
                 min_aspect_ratio, max_aspect_ratio, min_jaccard_overlap,
                 max_jaccard_overlap):
        self.max_sample = max_sample
        self.max_trial = max_trial
        self.min_scale = min_scale
        self.max_scale = max_scale
        self.min_aspect_ratio = min_aspect_ratio
        self.max_aspect_ratio = max_aspect_ratio
        self.min_jaccard_overlap = min_jaccard_overlap
        self.max_jaccard_overlap = max_jaccard_overlap


class bbox():
    def __init__(self, xmin, ymin, xmax, ymax):
        self.xmin = xmin
        self.ymin = ymin
        self.xmax = xmax
        self.ymax = ymax


def bbox_area(src_bbox):
    width = src_bbox.xmax - src_bbox.xmin
    height = src_bbox.ymax - src_bbox.ymin
    return width * height


def generate_sample(sampler):
    scale = random.uniform(sampler.min_scale, sampler.max_scale)
Q
qingqing01 已提交
40 41 42 43 44
    aspect_ratio = random.uniform(sampler.min_aspect_ratio,
                                  sampler.max_aspect_ratio)
    aspect_ratio = max(aspect_ratio, (scale**2.0))
    aspect_ratio = min(aspect_ratio, 1 / (scale**2.0))

G
gaoyuan 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
    bbox_width = scale * (aspect_ratio**0.5)
    bbox_height = scale / (aspect_ratio**0.5)
    xmin_bound = 1 - bbox_width
    ymin_bound = 1 - bbox_height
    xmin = random.uniform(0, xmin_bound)
    ymin = random.uniform(0, ymin_bound)
    xmax = xmin + bbox_width
    ymax = ymin + bbox_height
    sampled_bbox = bbox(xmin, ymin, xmax, ymax)
    return sampled_bbox


def jaccard_overlap(sample_bbox, object_bbox):
    if sample_bbox.xmin >= object_bbox.xmax or \
            sample_bbox.xmax <= object_bbox.xmin or \
            sample_bbox.ymin >= object_bbox.ymax or \
            sample_bbox.ymax <= object_bbox.ymin:
        return 0
    intersect_xmin = max(sample_bbox.xmin, object_bbox.xmin)
    intersect_ymin = max(sample_bbox.ymin, object_bbox.ymin)
    intersect_xmax = min(sample_bbox.xmax, object_bbox.xmax)
    intersect_ymax = min(sample_bbox.ymax, object_bbox.ymax)
    intersect_size = (intersect_xmax - intersect_xmin) * (
        intersect_ymax - intersect_ymin)
    sample_bbox_size = bbox_area(sample_bbox)
    object_bbox_size = bbox_area(object_bbox)
    overlap = intersect_size / (
        sample_bbox_size + object_bbox_size - intersect_size)
    return overlap


def satisfy_sample_constraint(sampler, sample_bbox, bbox_labels):
    if sampler.min_jaccard_overlap == 0 and sampler.max_jaccard_overlap == 0:
        return True
    for i in range(len(bbox_labels)):
        object_bbox = bbox(bbox_labels[i][1], bbox_labels[i][2],
                           bbox_labels[i][3], bbox_labels[i][4])
        overlap = jaccard_overlap(sample_bbox, object_bbox)
        if sampler.min_jaccard_overlap != 0 and \
                overlap < sampler.min_jaccard_overlap:
            continue
        if sampler.max_jaccard_overlap != 0 and \
                overlap > sampler.max_jaccard_overlap:
            continue
        return True
    return False


Y
Yuan Gao 已提交
93
def generate_batch_samples(batch_sampler, bbox_labels):
G
gaoyuan 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
    sampled_bbox = []
    index = []
    c = 0
    for sampler in batch_sampler:
        found = 0
        for i in range(sampler.max_trial):
            if found >= sampler.max_sample:
                break
            sample_bbox = generate_sample(sampler)
            if satisfy_sample_constraint(sampler, sample_bbox, bbox_labels):
                sampled_bbox.append(sample_bbox)
                found = found + 1
                index.append(c)
        c = c + 1
    return sampled_bbox


def clip_bbox(src_bbox):
    src_bbox.xmin = max(min(src_bbox.xmin, 1.0), 0.0)
    src_bbox.ymin = max(min(src_bbox.ymin, 1.0), 0.0)
    src_bbox.xmax = max(min(src_bbox.xmax, 1.0), 0.0)
    src_bbox.ymax = max(min(src_bbox.ymax, 1.0), 0.0)
    return src_bbox


def meet_emit_constraint(src_bbox, sample_bbox):
    center_x = (src_bbox.xmax + src_bbox.xmin) / 2
    center_y = (src_bbox.ymax + src_bbox.ymin) / 2
    if center_x >= sample_bbox.xmin and \
        center_x <= sample_bbox.xmax and \
        center_y >= sample_bbox.ymin and \
        center_y <= sample_bbox.ymax:
        return True
    return False


def transform_labels(bbox_labels, sample_bbox):
    proj_bbox = bbox(0, 0, 0, 0)
    sample_labels = []
    for i in range(len(bbox_labels)):
        sample_label = []
        object_bbox = bbox(bbox_labels[i][1], bbox_labels[i][2],
                           bbox_labels[i][3], bbox_labels[i][4])
        if not meet_emit_constraint(object_bbox, sample_bbox):
            continue
        sample_width = sample_bbox.xmax - sample_bbox.xmin
        sample_height = sample_bbox.ymax - sample_bbox.ymin
        proj_bbox.xmin = (object_bbox.xmin - sample_bbox.xmin) / sample_width
        proj_bbox.ymin = (object_bbox.ymin - sample_bbox.ymin) / sample_height
        proj_bbox.xmax = (object_bbox.xmax - sample_bbox.xmin) / sample_width
        proj_bbox.ymax = (object_bbox.ymax - sample_bbox.ymin) / sample_height
        proj_bbox = clip_bbox(proj_bbox)
        if bbox_area(proj_bbox) > 0:
            sample_label.append(bbox_labels[i][0])
            sample_label.append(float(proj_bbox.xmin))
            sample_label.append(float(proj_bbox.ymin))
            sample_label.append(float(proj_bbox.xmax))
            sample_label.append(float(proj_bbox.ymax))
152 153
            #sample_label.append(bbox_labels[i][5])
            sample_label = sample_label + bbox_labels[i][5:]
G
gaoyuan 已提交
154 155 156 157 158 159 160 161 162 163 164 165 166
            sample_labels.append(sample_label)
    return sample_labels


def crop_image(img, bbox_labels, sample_bbox, image_width, image_height):
    sample_bbox = clip_bbox(sample_bbox)
    xmin = int(sample_bbox.xmin * image_width)
    xmax = int(sample_bbox.xmax * image_width)
    ymin = int(sample_bbox.ymin * image_height)
    ymax = int(sample_bbox.ymax * image_height)
    sample_img = img[ymin:ymax, xmin:xmax]
    sample_labels = transform_labels(bbox_labels, sample_bbox)
    return sample_img, sample_labels
G
gaoyuan 已提交
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223


def random_brightness(img, settings):
    prob = random.uniform(0, 1)
    if prob < settings._brightness_prob:
        delta = random.uniform(-settings._brightness_delta,
                               settings._brightness_delta) + 1
        img = ImageEnhance.Brightness(img).enhance(delta)
    return img


def random_contrast(img, settings):
    prob = random.uniform(0, 1)
    if prob < settings._contrast_prob:
        delta = random.uniform(-settings._contrast_delta,
                               settings._contrast_delta) + 1
        img = ImageEnhance.Contrast(img).enhance(delta)
    return img


def random_saturation(img, settings):
    prob = random.uniform(0, 1)
    if prob < settings._saturation_prob:
        delta = random.uniform(-settings._saturation_delta,
                               settings._saturation_delta) + 1
        img = ImageEnhance.Color(img).enhance(delta)
    return img


def random_hue(img, settings):
    prob = random.uniform(0, 1)
    if prob < settings._hue_prob:
        delta = random.uniform(-settings._hue_delta, settings._hue_delta)
        img_hsv = np.array(img.convert('HSV'))
        img_hsv[:, :, 0] = img_hsv[:, :, 0] + delta
        img = Image.fromarray(img_hsv, mode='HSV').convert('RGB')
    return img


def distort_image(img, settings):
    prob = random.uniform(0, 1)
    # Apply different distort order
    if prob > 0.5:
        img = random_brightness(img, settings)
        img = random_contrast(img, settings)
        img = random_saturation(img, settings)
        img = random_hue(img, settings)
    else:
        img = random_brightness(img, settings)
        img = random_saturation(img, settings)
        img = random_hue(img, settings)
        img = random_contrast(img, settings)
    return img


def expand_image(img, bbox_labels, img_width, img_height, settings):
    prob = random.uniform(0, 1)
224
    if prob < settings._expand_prob:
Y
Yuan Gao 已提交
225
        if settings._expand_max_ratio - 1 >= 0.01:
Y
Yuan Gao 已提交
226
            expand_ratio = random.uniform(1, settings._expand_max_ratio)
G
gaoyuan 已提交
227 228 229 230 231 232 233 234 235 236 237 238
            height = int(img_height * expand_ratio)
            width = int(img_width * expand_ratio)
            h_off = math.floor(random.uniform(0, height - img_height))
            w_off = math.floor(random.uniform(0, width - img_width))
            expand_bbox = bbox(-w_off / img_width, -h_off / img_height,
                               (width - w_off) / img_width,
                               (height - h_off) / img_height)
            expand_img = np.ones((height, width, 3))
            expand_img = np.uint8(expand_img * np.squeeze(settings._img_mean))
            expand_img = Image.fromarray(expand_img)
            expand_img.paste(img, (int(w_off), int(h_off)))
            bbox_labels = transform_labels(bbox_labels, expand_bbox)
Y
Yuan Gao 已提交
239 240
            return expand_img, bbox_labels, width, height
    return img, bbox_labels, img_width, img_height