Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
03a0ae1d
M
models
项目概览
PaddlePaddle
/
models
1 年多 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
03a0ae1d
编写于
4月 16, 2018
作者:
Y
Yuan Gao
提交者:
qingqing01
4月 16, 2018
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
multiprocess data reader (#849)
上级
d300e5e4
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
128 addition
and
129 deletion
+128
-129
fluid/object_detection/image_util.py
fluid/object_detection/image_util.py
+1
-1
fluid/object_detection/reader.py
fluid/object_detection/reader.py
+127
-127
fluid/object_detection/train.py
fluid/object_detection/train.py
+0
-1
未找到文件。
fluid/object_detection/image_util.py
浏览文件 @
03a0ae1d
...
...
@@ -216,7 +216,7 @@ def distort_image(img, settings):
def
expand_image
(
img
,
bbox_labels
,
img_width
,
img_height
,
settings
):
prob
=
random
.
uniform
(
0
,
1
)
if
prob
<
settings
.
_expand_prob
:
if
_expand_max_ratio
-
1
>=
0.01
:
if
settings
.
_expand_max_ratio
-
1
>=
0.01
:
expand_ratio
=
random
.
uniform
(
1
,
settings
.
_expand_max_ratio
)
height
=
int
(
img_height
*
expand_ratio
)
width
=
int
(
img_width
*
expand_ratio
)
...
...
fluid/object_detection/reader.py
浏览文件 @
03a0ae1d
...
...
@@ -12,6 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import
paddle
import
image_util
from
paddle.utils.image_util
import
*
import
random
...
...
@@ -22,6 +23,7 @@ import xml.etree.ElementTree
import
os
import
time
import
copy
import
functools
class
Settings
(
object
):
...
...
@@ -36,6 +38,8 @@ class Settings(object):
for
line
in
open
(
label_fpath
):
self
.
_label_list
.
append
(
line
.
strip
())
self
.
_thread
=
2
self
.
_buf_size
=
2048
self
.
_apply_distort
=
apply_distort
self
.
_apply_expand
=
apply_expand
self
.
_resize_height
=
resize_h
...
...
@@ -94,6 +98,123 @@ class Settings(object):
return
self
.
_img_mean
def
process_image
(
sample
,
settings
,
mode
):
img
=
Image
.
open
(
sample
[
0
])
if
img
.
mode
==
'L'
:
img
=
img
.
convert
(
'RGB'
)
img_width
,
img_height
=
img
.
size
if
mode
==
'train'
or
mode
==
'test'
:
if
settings
.
dataset
==
'coco'
:
# layout: category_id | xmin | ymin | xmax | ymax | iscrowd | origin_coco_bbox | segmentation | area | image_id | annotation_id
bbox_labels
=
[]
annIds
=
coco
.
getAnnIds
(
imgIds
=
image
[
'id'
])
anns
=
coco
.
loadAnns
(
annIds
)
for
ann
in
anns
:
bbox_sample
=
[]
# start from 1, leave 0 to background
bbox_sample
.
append
(
float
(
category_ids
.
index
(
ann
[
'category_id'
]))
+
1
)
bbox
=
ann
[
'bbox'
]
xmin
,
ymin
,
w
,
h
=
bbox
xmax
=
xmin
+
w
ymax
=
ymin
+
h
bbox_sample
.
append
(
float
(
xmin
)
/
img_width
)
bbox_sample
.
append
(
float
(
ymin
)
/
img_height
)
bbox_sample
.
append
(
float
(
xmax
)
/
img_width
)
bbox_sample
.
append
(
float
(
ymax
)
/
img_height
)
bbox_sample
.
append
(
float
(
ann
[
'iscrowd'
]))
#bbox_sample.append(ann['bbox'])
#bbox_sample.append(ann['segmentation'])
#bbox_sample.append(ann['area'])
#bbox_sample.append(ann['image_id'])
#bbox_sample.append(ann['id'])
bbox_labels
.
append
(
bbox_sample
)
elif
settings
.
dataset
==
'pascalvoc'
:
# layout: label | xmin | ymin | xmax | ymax | difficult
bbox_labels
=
[]
root
=
xml
.
etree
.
ElementTree
.
parse
(
sample
[
1
]).
getroot
()
for
object
in
root
.
findall
(
'object'
):
bbox_sample
=
[]
# start from 1
bbox_sample
.
append
(
float
(
settings
.
label_list
.
index
(
object
.
find
(
'name'
).
text
)))
bbox
=
object
.
find
(
'bndbox'
)
difficult
=
float
(
object
.
find
(
'difficult'
).
text
)
bbox_sample
.
append
(
float
(
bbox
.
find
(
'xmin'
).
text
)
/
img_width
)
bbox_sample
.
append
(
float
(
bbox
.
find
(
'ymin'
).
text
)
/
img_height
)
bbox_sample
.
append
(
float
(
bbox
.
find
(
'xmax'
).
text
)
/
img_width
)
bbox_sample
.
append
(
float
(
bbox
.
find
(
'ymax'
).
text
)
/
img_height
)
bbox_sample
.
append
(
difficult
)
bbox_labels
.
append
(
bbox_sample
)
sample_labels
=
bbox_labels
if
mode
==
'train'
:
if
settings
.
_apply_distort
:
img
=
image_util
.
distort_image
(
img
,
settings
)
if
settings
.
_apply_expand
:
img
,
bbox_labels
,
img_width
,
img_height
=
image_util
.
expand_image
(
img
,
bbox_labels
,
img_width
,
img_height
,
settings
)
batch_sampler
=
[]
# hard-code here
batch_sampler
.
append
(
image_util
.
sampler
(
1
,
1
,
1.0
,
1.0
,
1.0
,
1.0
,
0.0
,
0.0
))
batch_sampler
.
append
(
image_util
.
sampler
(
1
,
50
,
0.3
,
1.0
,
0.5
,
2.0
,
0.1
,
0.0
))
batch_sampler
.
append
(
image_util
.
sampler
(
1
,
50
,
0.3
,
1.0
,
0.5
,
2.0
,
0.3
,
0.0
))
batch_sampler
.
append
(
image_util
.
sampler
(
1
,
50
,
0.3
,
1.0
,
0.5
,
2.0
,
0.5
,
0.0
))
batch_sampler
.
append
(
image_util
.
sampler
(
1
,
50
,
0.3
,
1.0
,
0.5
,
2.0
,
0.7
,
0.0
))
batch_sampler
.
append
(
image_util
.
sampler
(
1
,
50
,
0.3
,
1.0
,
0.5
,
2.0
,
0.9
,
0.0
))
batch_sampler
.
append
(
image_util
.
sampler
(
1
,
50
,
0.3
,
1.0
,
0.5
,
2.0
,
0.0
,
1.0
))
""" random crop """
sampled_bbox
=
image_util
.
generate_batch_samples
(
batch_sampler
,
bbox_labels
)
img
=
np
.
array
(
img
)
if
len
(
sampled_bbox
)
>
0
:
idx
=
int
(
random
.
uniform
(
0
,
len
(
sampled_bbox
)))
img
,
sample_labels
=
image_util
.
crop_image
(
img
,
bbox_labels
,
sampled_bbox
[
idx
],
img_width
,
img_height
)
img
=
Image
.
fromarray
(
img
)
img
=
img
.
resize
((
settings
.
resize_w
,
settings
.
resize_h
),
Image
.
ANTIALIAS
)
img
=
np
.
array
(
img
)
if
mode
==
'train'
:
mirror
=
int
(
random
.
uniform
(
0
,
2
))
if
mirror
==
1
:
img
=
img
[:,
::
-
1
,
:]
for
i
in
xrange
(
len
(
sample_labels
)):
tmp
=
sample_labels
[
i
][
1
]
sample_labels
[
i
][
1
]
=
1
-
sample_labels
[
i
][
3
]
sample_labels
[
i
][
3
]
=
1
-
tmp
# HWC to CHW
if
len
(
img
.
shape
)
==
3
:
img
=
np
.
swapaxes
(
img
,
1
,
2
)
img
=
np
.
swapaxes
(
img
,
1
,
0
)
# RBG to BGR
img
=
img
[[
2
,
1
,
0
],
:,
:]
img
=
img
.
astype
(
'float32'
)
img
-=
settings
.
img_mean
img
=
img
.
flatten
()
img
=
img
*
0.007843
sample_labels
=
np
.
array
(
sample_labels
)
if
mode
==
'train'
or
mode
==
'test'
:
if
len
(
sample_labels
)
!=
0
:
return
img
.
astype
(
'float32'
),
sample_labels
[:,
1
:
5
],
sample_labels
[:,
0
].
astype
(
'int32'
),
sample_labels
[:,
-
1
].
astype
(
'int32'
)
elif
mode
==
'infer'
:
return
img
.
astype
(
'float32'
)
def
_reader_creator
(
settings
,
file_list
,
mode
,
shuffle
):
def
reader
():
if
settings
.
dataset
==
'coco'
:
...
...
@@ -117,7 +238,6 @@ def _reader_creator(settings, file_list, mode, shuffle):
images
)
>
settings
.
toy
else
images
print
(
"{} on {} with {} images"
.
format
(
mode
,
settings
.
dataset
,
len
(
images
)))
if
shuffle
:
random
.
shuffle
(
images
)
...
...
@@ -125,140 +245,20 @@ def _reader_creator(settings, file_list, mode, shuffle):
if
settings
.
dataset
==
'coco'
:
image_name
=
image
[
'file_name'
]
image_path
=
os
.
path
.
join
(
settings
.
data_dir
,
image_name
)
yield
[
image_path
]
elif
settings
.
dataset
==
'pascalvoc'
:
if
mode
==
'train'
or
mode
==
'test'
:
image_path
,
label_path
=
image
.
split
()
image_path
=
os
.
path
.
join
(
settings
.
data_dir
,
image_path
)
label_path
=
os
.
path
.
join
(
settings
.
data_dir
,
label_path
)
yield
image_path
,
label_path
elif
mode
==
'infer'
:
image_path
=
os
.
path
.
join
(
settings
.
data_dir
,
image
)
yield
[
image_path
]
img
=
Image
.
open
(
image_path
)
if
img
.
mode
==
'L'
:
img
=
img
.
convert
(
'RGB'
)
img_width
,
img_height
=
img
.
size
if
mode
==
'train'
or
mode
==
'test'
:
if
settings
.
dataset
==
'coco'
:
# layout: category_id | xmin | ymin | xmax | ymax | iscrowd | origin_coco_bbox | segmentation | area | image_id | annotation_id
bbox_labels
=
[]
annIds
=
coco
.
getAnnIds
(
imgIds
=
image
[
'id'
])
anns
=
coco
.
loadAnns
(
annIds
)
for
ann
in
anns
:
bbox_sample
=
[]
# start from 1, leave 0 to background
bbox_sample
.
append
(
float
(
category_ids
.
index
(
ann
[
'category_id'
]))
+
1
)
bbox
=
ann
[
'bbox'
]
xmin
,
ymin
,
w
,
h
=
bbox
xmax
=
xmin
+
w
ymax
=
ymin
+
h
bbox_sample
.
append
(
float
(
xmin
)
/
img_width
)
bbox_sample
.
append
(
float
(
ymin
)
/
img_height
)
bbox_sample
.
append
(
float
(
xmax
)
/
img_width
)
bbox_sample
.
append
(
float
(
ymax
)
/
img_height
)
bbox_sample
.
append
(
float
(
ann
[
'iscrowd'
]))
#bbox_sample.append(ann['bbox'])
#bbox_sample.append(ann['segmentation'])
#bbox_sample.append(ann['area'])
#bbox_sample.append(ann['image_id'])
#bbox_sample.append(ann['id'])
bbox_labels
.
append
(
bbox_sample
)
elif
settings
.
dataset
==
'pascalvoc'
:
# layout: label | xmin | ymin | xmax | ymax | difficult
bbox_labels
=
[]
root
=
xml
.
etree
.
ElementTree
.
parse
(
label_path
).
getroot
()
for
object
in
root
.
findall
(
'object'
):
bbox_sample
=
[]
# start from 1
bbox_sample
.
append
(
float
(
settings
.
label_list
.
index
(
object
.
find
(
'name'
).
text
)))
bbox
=
object
.
find
(
'bndbox'
)
difficult
=
float
(
object
.
find
(
'difficult'
).
text
)
bbox_sample
.
append
(
float
(
bbox
.
find
(
'xmin'
).
text
)
/
img_width
)
bbox_sample
.
append
(
float
(
bbox
.
find
(
'ymin'
).
text
)
/
img_height
)
bbox_sample
.
append
(
float
(
bbox
.
find
(
'xmax'
).
text
)
/
img_width
)
bbox_sample
.
append
(
float
(
bbox
.
find
(
'ymax'
).
text
)
/
img_height
)
bbox_sample
.
append
(
difficult
)
bbox_labels
.
append
(
bbox_sample
)
sample_labels
=
bbox_labels
if
mode
==
'train'
:
if
settings
.
_apply_distort
:
img
=
image_util
.
distort_image
(
img
,
settings
)
if
settings
.
_apply_expand
:
img
,
bbox_labels
,
img_width
,
img_height
=
image_util
.
expand_image
(
img
,
bbox_labels
,
img_width
,
img_height
,
settings
)
batch_sampler
=
[]
# hard-code here
batch_sampler
.
append
(
image_util
.
sampler
(
1
,
1
,
1.0
,
1.0
,
1.0
,
1.0
,
0.0
,
0.0
))
batch_sampler
.
append
(
image_util
.
sampler
(
1
,
50
,
0.3
,
1.0
,
0.5
,
2.0
,
0.1
,
0.0
))
batch_sampler
.
append
(
image_util
.
sampler
(
1
,
50
,
0.3
,
1.0
,
0.5
,
2.0
,
0.3
,
0.0
))
batch_sampler
.
append
(
image_util
.
sampler
(
1
,
50
,
0.3
,
1.0
,
0.5
,
2.0
,
0.5
,
0.0
))
batch_sampler
.
append
(
image_util
.
sampler
(
1
,
50
,
0.3
,
1.0
,
0.5
,
2.0
,
0.7
,
0.0
))
batch_sampler
.
append
(
image_util
.
sampler
(
1
,
50
,
0.3
,
1.0
,
0.5
,
2.0
,
0.9
,
0.0
))
batch_sampler
.
append
(
image_util
.
sampler
(
1
,
50
,
0.3
,
1.0
,
0.5
,
2.0
,
0.0
,
1.0
))
""" random crop """
sampled_bbox
=
image_util
.
generate_batch_samples
(
batch_sampler
,
bbox_labels
,
img_width
,
img_height
)
img
=
np
.
array
(
img
)
if
len
(
sampled_bbox
)
>
0
:
idx
=
int
(
random
.
uniform
(
0
,
len
(
sampled_bbox
)))
img
,
sample_labels
=
image_util
.
crop_image
(
img
,
bbox_labels
,
sampled_bbox
[
idx
],
img_width
,
img_height
)
img
=
Image
.
fromarray
(
img
)
img
=
img
.
resize
((
settings
.
resize_w
,
settings
.
resize_h
),
Image
.
ANTIALIAS
)
img
=
np
.
array
(
img
)
if
mode
==
'train'
:
mirror
=
int
(
random
.
uniform
(
0
,
2
))
if
mirror
==
1
:
img
=
img
[:,
::
-
1
,
:]
for
i
in
xrange
(
len
(
sample_labels
)):
tmp
=
sample_labels
[
i
][
1
]
sample_labels
[
i
][
1
]
=
1
-
sample_labels
[
i
][
3
]
sample_labels
[
i
][
3
]
=
1
-
tmp
# HWC to CHW
if
len
(
img
.
shape
)
==
3
:
img
=
np
.
swapaxes
(
img
,
1
,
2
)
img
=
np
.
swapaxes
(
img
,
1
,
0
)
# RBG to BGR
img
=
img
[[
2
,
1
,
0
],
:,
:]
img
=
img
.
astype
(
'float32'
)
img
-=
settings
.
img_mean
img
=
img
.
flatten
()
img
=
img
*
0.007843
sample_labels
=
np
.
array
(
sample_labels
)
if
mode
==
'train'
or
mode
==
'test'
:
if
mode
==
'train'
and
len
(
sample_labels
)
==
0
:
continue
if
mode
==
'test'
and
len
(
sample_labels
)
==
0
:
continue
yield
img
.
astype
(
'float32'
),
sample_labels
[:,
1
:
5
],
sample_labels
[:,
0
].
astype
(
'int32'
),
sample_labels
[:,
-
1
].
astype
(
'int32'
)
elif
mode
==
'infer'
:
yield
img
.
astype
(
'float32'
)
return
reader
mapper
=
functools
.
partial
(
process_image
,
mode
=
mode
,
settings
=
settings
)
return
paddle
.
reader
.
xmap_readers
(
mapper
,
reader
,
settings
.
_thread
,
settings
.
_buf_size
)
def
draw_bounding_box_on_image
(
image
,
...
...
fluid/object_detection/train.py
浏览文件 @
03a0ae1d
import
paddle
import
paddle.fluid
as
fluid
import
reader
import
load_model
as
load_model
from
mobilenet_ssd
import
mobile_net
from
utility
import
add_arguments
,
print_arguments
import
os
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录