mask_rcnn.py 10.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

19 20 21 22 23
from collections import OrderedDict

import paddle.fluid as fluid

from ppdet.experimental import mixed_precision_global_state
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
from ppdet.core.workspace import register

__all__ = ['MaskRCNN']


@register
class MaskRCNN(object):
    """
    Mask R-CNN architecture, see https://arxiv.org/abs/1703.06870
    Args:
        backbone (object): backbone instance
        rpn_head (object): `RPNhead` instance
        bbox_assigner (object): `BBoxAssigner` instance
        roi_extractor (object): ROI extractor instance
        bbox_head (object): `BBoxHead` instance
        mask_assigner (object): `MaskAssigner` instance
        mask_head (object): `MaskHead` instance
        fpn (object): feature pyramid network instance
    """

    __category__ = 'architecture'
    __inject__ = [
        'backbone', 'rpn_head', 'bbox_assigner', 'roi_extractor', 'bbox_head',
        'mask_assigner', 'mask_head', 'fpn'
    ]

    def __init__(self,
                 backbone,
                 rpn_head,
                 bbox_head='BBoxHead',
                 bbox_assigner='BBoxAssigner',
                 roi_extractor='RoIAlign',
                 mask_assigner='MaskAssigner',
                 mask_head='MaskHead',
58
                 rpn_only=False,
59 60 61 62 63 64 65 66 67
                 fpn=None):
        super(MaskRCNN, self).__init__()
        self.backbone = backbone
        self.rpn_head = rpn_head
        self.bbox_assigner = bbox_assigner
        self.roi_extractor = roi_extractor
        self.bbox_head = bbox_head
        self.mask_assigner = mask_assigner
        self.mask_head = mask_head
68
        self.rpn_only = rpn_only
69 70
        self.fpn = fpn

71 72
    def build(self, feed_vars, mode='train'):
        if mode == 'train':
73 74 75
            required_fields = [
                'gt_label', 'gt_box', 'gt_mask', 'is_crowd', 'im_info'
            ]
76 77
        else:
            required_fields = ['im_shape', 'im_info']
W
wangguanzhong 已提交
78 79
        self._input_check(required_fields, feed_vars)
        im = feed_vars['image']
80 81
        im_info = feed_vars['im_info']

82 83 84 85 86 87
        mixed_precision_enabled = mixed_precision_global_state() is not None
        # cast inputs to FP16
        if mixed_precision_enabled:
            im = fluid.layers.cast(im, 'float16')

        # backbone
88 89
        body_feats = self.backbone(im)

90 91 92 93 94
        # cast features back to FP32
        if mixed_precision_enabled:
            body_feats = OrderedDict((k, fluid.layers.cast(v, 'float32'))
                                     for k, v in body_feats.items())

95 96 97 98
        # FPN
        if self.fpn is not None:
            body_feats, spatial_scale = self.fpn.get_output(body_feats)

99 100
        # RPN proposals
        rois = self.rpn_head.get_proposals(body_feats, im_info, mode=mode)
101

102 103 104 105 106 107 108 109 110 111 112 113 114
        if mode == 'train':
            rpn_loss = self.rpn_head.get_loss(im_info, feed_vars['gt_box'],
                                              feed_vars['is_crowd'])

            outs = self.bbox_assigner(
                rpn_rois=rois,
                gt_classes=feed_vars['gt_label'],
                is_crowd=feed_vars['is_crowd'],
                gt_boxes=feed_vars['gt_box'],
                im_info=feed_vars['im_info'])
            rois = outs[0]
            labels_int32 = outs[1]

115 116 117 118 119 120
            if self.fpn is None:
                last_feat = body_feats[list(body_feats.keys())[-1]]
                roi_feat = self.roi_extractor(last_feat, rois)
            else:
                roi_feat = self.roi_extractor(body_feats, rois, spatial_scale)

121 122 123 124 125 126 127 128 129 130 131 132 133 134
            loss = self.bbox_head.get_loss(roi_feat, labels_int32, *outs[2:])
            loss.update(rpn_loss)

            mask_rois, roi_has_mask_int32, mask_int32 = self.mask_assigner(
                rois=rois,
                gt_classes=feed_vars['gt_label'],
                is_crowd=feed_vars['is_crowd'],
                gt_segms=feed_vars['gt_mask'],
                im_info=feed_vars['im_info'],
                labels_int32=labels_int32)
            if self.fpn is None:
                bbox_head_feat = self.bbox_head.get_head_feat()
                feat = fluid.layers.gather(bbox_head_feat, roi_has_mask_int32)
            else:
135 136
                feat = self.roi_extractor(
                    body_feats, mask_rois, spatial_scale, is_mask=True)
137 138 139 140 141 142 143 144

            mask_loss = self.mask_head.get_loss(feat, mask_int32)
            loss.update(mask_loss)

            total_loss = fluid.layers.sum(list(loss.values()))
            loss.update({'loss': total_loss})
            return loss

145
        else:
146
            if self.rpn_only:
147 148
                im_scale = fluid.layers.slice(
                    im_info, [1], starts=[2], ends=[3])
149 150 151
                im_scale = fluid.layers.sequence_expand(im_scale, rois)
                rois = rois / im_scale
                return {'proposal': rois}
W
wangguanzhong 已提交
152 153 154 155 156
            mask_name = 'mask_pred'
            mask_pred, bbox_pred = self.single_scale_eval(
                body_feats, mask_name, rois, im_info, feed_vars['im_shape'],
                spatial_scale)
            return {'bbox': bbox_pred, 'mask': mask_pred}
157

W
wangguanzhong 已提交
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
    def build_multi_scale(self, feed_vars, mask_branch=False):
        required_fields = ['image', 'im_info']
        self._input_check(required_fields, feed_vars)

        ims = []
        for k in feed_vars.keys():
            if 'image' in k:
                ims.append(feed_vars[k])
        result = {}

        if not mask_branch:
            assert 'im_shape' in feed_vars, \
                "{} has no im_shape field".format(feed_vars)
            result.update(feed_vars)

        for i, im in enumerate(ims):
            im_info = fluid.layers.slice(
                input=feed_vars['im_info'],
                axes=[1],
                starts=[3 * i],
                ends=[3 * i + 3])
            body_feats = self.backbone(im)
            result.update(body_feats)

            # FPN
            if self.fpn is not None:
                body_feats, spatial_scale = self.fpn.get_output(body_feats)
            rois = self.rpn_head.get_proposals(body_feats, im_info, mode='test')
            if not mask_branch:
                im_shape = feed_vars['im_shape']
                body_feat_names = list(body_feats.keys())
                if self.fpn is None:
                    body_feat = body_feats[body_feat_names[-1]]
                    roi_feat = self.roi_extractor(body_feat, rois)
                else:
                    roi_feat = self.roi_extractor(body_feats, rois,
                                                  spatial_scale)
                pred = self.bbox_head.get_prediction(
                    roi_feat, rois, im_info, im_shape, return_box_score=True)
                bbox_name = 'bbox_' + str(i)
                score_name = 'score_' + str(i)
                if 'flip' in im.name:
                    bbox_name += '_flip'
                    score_name += '_flip'
                result[bbox_name] = pred['bbox']
                result[score_name] = pred['score']
            else:
                mask_name = 'mask_pred_' + str(i)
                bbox_pred = feed_vars['bbox']
                result.update({im.name: im})
                if 'flip' in im.name:
                    mask_name += '_flip'
                    bbox_pred = feed_vars['bbox_flip']
                mask_pred, bbox_pred = self.single_scale_eval(
                    body_feats, mask_name, rois, im_info, feed_vars['im_shape'],
                    spatial_scale, bbox_pred)
                result[mask_name] = mask_pred
        return result

    def single_scale_eval(self,
                          body_feats,
                          mask_name,
                          rois,
                          im_info,
                          im_shape,
                          spatial_scale,
                          bbox_pred=None):
        if self.fpn is None:
            last_feat = body_feats[list(body_feats.keys())[-1]]
            roi_feat = self.roi_extractor(last_feat, rois)
        else:
            roi_feat = self.roi_extractor(body_feats, rois, spatial_scale)
        if not bbox_pred:
231
            bbox_pred = self.bbox_head.get_prediction(roi_feat, rois, im_info,
W
wangguanzhong 已提交
232
                                                      im_shape)
233 234
            bbox_pred = bbox_pred['bbox']

W
wangguanzhong 已提交
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
        # share weight
        bbox_shape = fluid.layers.shape(bbox_pred)
        bbox_size = fluid.layers.reduce_prod(bbox_shape)
        bbox_size = fluid.layers.reshape(bbox_size, [1, 1])
        size = fluid.layers.fill_constant([1, 1], value=6, dtype='int32')
        cond = fluid.layers.less_than(x=bbox_size, y=size)

        mask_pred = fluid.layers.create_global_var(
            shape=[1],
            value=0.0,
            dtype='float32',
            persistable=False,
            name=mask_name)
        with fluid.layers.control_flow.Switch() as switch:
            with switch.case(cond):
                fluid.layers.assign(input=bbox_pred, output=mask_pred)
            with switch.default():
                bbox = fluid.layers.slice(bbox_pred, [1], starts=[2], ends=[6])

                im_scale = fluid.layers.slice(
                    im_info, [1], starts=[2], ends=[3])
                im_scale = fluid.layers.sequence_expand(im_scale, bbox)

                mask_rois = bbox * im_scale
                if self.fpn is None:
                    mask_feat = self.roi_extractor(last_feat, mask_rois)
                    mask_feat = self.bbox_head.get_head_feat(mask_feat)
                else:
                    mask_feat = self.roi_extractor(
                        body_feats, mask_rois, spatial_scale, is_mask=True)

                mask_out = self.mask_head.get_prediction(mask_feat, bbox)
                fluid.layers.assign(input=mask_out, output=mask_pred)
        return mask_pred, bbox_pred

    def _input_check(self, require_fields, feed_vars):
        for var in require_fields:
            assert var in feed_vars, \
                "{} has no {} field".format(feed_vars, var)
274

275 276
    def train(self, feed_vars):
        return self.build(feed_vars, 'train')
277

W
wangguanzhong 已提交
278 279 280
    def eval(self, feed_vars, multi_scale=None, mask_branch=False):
        if multi_scale:
            return self.build_multi_scale(feed_vars, mask_branch)
281
        return self.build(feed_vars, 'test')
282 283

    def test(self, feed_vars):
284
        return self.build(feed_vars, 'test')