Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
6b09ec35
M
models
项目概览
PaddlePaddle
/
models
1 年多 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
6b09ec35
编写于
6月 24, 2019
作者:
Y
Yang Zhang
提交者:
qingqing01
6月 24, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Unify interface of detectors (#2503)
上级
44c2837e
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
95 addition
and
115 deletion
+95
-115
PaddleCV/object_detection/ppdet/modeling/architectures/mask_rcnn.py
...bject_detection/ppdet/modeling/architectures/mask_rcnn.py
+87
-107
PaddleCV/object_detection/ppdet/modeling/architectures/retinanet.py
...bject_detection/ppdet/modeling/architectures/retinanet.py
+4
-4
PaddleCV/object_detection/ppdet/modeling/architectures/yolov3.py
...V/object_detection/ppdet/modeling/architectures/yolov3.py
+4
-4
未找到文件。
PaddleCV/object_detection/ppdet/modeling/architectures/mask_rcnn.py
浏览文件 @
6b09ec35
...
...
@@ -16,8 +16,6 @@ from __future__ import absolute_import
from
__future__
import
division
from
__future__
import
print_function
from
collections
import
OrderedDict
from
paddle
import
fluid
from
ppdet.core.workspace
import
register
...
...
@@ -64,11 +62,16 @@ class MaskRCNN(object):
self
.
mask_head
=
mask_head
self
.
fpn
=
fpn
def
train
(
self
,
feed_vars
):
def
build
(
self
,
feed_vars
,
mode
=
'train'
):
im
=
feed_vars
[
'image'
]
assert
mode
in
[
'train'
,
'test'
],
"only support 'train' and 'test' mode"
if
mode
==
'train'
:
required_fields
=
[
'gt_label'
,
'gt_box'
,
'gt_mask'
,
'is_crowd'
,
'im_info'
]
else
:
required_fields
=
[
'im_shape'
,
'im_info'
]
for
var
in
required_fields
:
assert
var
in
feed_vars
,
"{} has no {} field"
.
format
(
feed_vars
,
var
)
im_info
=
feed_vars
[
'im_info'
]
gt_box
=
feed_vars
[
'gt_box'
]
is_crowd
=
feed_vars
[
'is_crowd'
]
body_feats
=
self
.
backbone
(
im
)
...
...
@@ -76,117 +79,94 @@ class MaskRCNN(object):
if
self
.
fpn
is
not
None
:
body_feats
,
spatial_scale
=
self
.
fpn
.
get_output
(
body_feats
)
# rpn proposals
rois
=
self
.
rpn_head
.
get_proposals
(
body_feats
,
im_info
)
rpn_loss
=
self
.
rpn_head
.
get_loss
(
im_info
,
gt_box
,
is_crowd
)
for
var
in
[
'gt_label'
,
'is_crowd'
,
'gt_box'
,
'im_info'
]:
assert
var
in
feed_vars
,
"{} has no {}"
.
format
(
feed_vars
,
var
)
outs
=
self
.
bbox_assigner
(
rpn_rois
=
rois
,
gt_classes
=
feed_vars
[
'gt_label'
],
is_crowd
=
feed_vars
[
'is_crowd'
],
gt_boxes
=
feed_vars
[
'gt_box'
],
im_info
=
feed_vars
[
'im_info'
])
rois
=
outs
[
0
]
labels_int32
=
outs
[
1
]
bbox_targets
=
outs
[
2
]
bbox_inside_weights
=
outs
[
3
]
bbox_outside_weights
=
outs
[
4
]
# RPN proposals
rois
=
self
.
rpn_head
.
get_proposals
(
body_feats
,
im_info
,
mode
=
mode
)
if
self
.
fpn
is
None
:
# in models without FPN, roi extractor only uses the last level of
# feature maps. And list(body_feats.keys())[-1] represents the name of
# last feature map.
last_feat
=
body_feats
[
list
(
body_feats
.
keys
())[
-
1
]]
roi_feat
=
self
.
roi_extractor
(
last_feat
,
rois
)
else
:
roi_feat
=
self
.
roi_extractor
(
body_feats
,
rois
,
spatial_scale
)
loss
=
self
.
bbox_head
.
get_loss
(
roi_feat
,
labels_int32
,
bbox_targets
,
bbox_inside_weights
,
bbox_outside_weights
)
loss
.
update
(
rpn_loss
)
assert
'gt_mask'
in
feed_vars
,
"{} has no gt_mask"
.
format
(
feed_vars
)
outs
=
self
.
mask_assigner
(
rois
=
rois
,
gt_classes
=
feed_vars
[
'gt_label'
],
is_crowd
=
feed_vars
[
'is_crowd'
],
gt_segms
=
feed_vars
[
'gt_mask'
],
im_info
=
feed_vars
[
'im_info'
],
labels_int32
=
labels_int32
)
mask_rois
,
roi_has_mask_int32
,
mask_int32
=
outs
if
self
.
fpn
is
None
:
bbox_head_feat
=
self
.
bbox_head
.
get_head_feat
()
feat
=
fluid
.
layers
.
gather
(
bbox_head_feat
,
roi_has_mask_int32
)
if
mode
==
'train'
:
rpn_loss
=
self
.
rpn_head
.
get_loss
(
im_info
,
feed_vars
[
'gt_box'
],
feed_vars
[
'is_crowd'
])
outs
=
self
.
bbox_assigner
(
rpn_rois
=
rois
,
gt_classes
=
feed_vars
[
'gt_label'
],
is_crowd
=
feed_vars
[
'is_crowd'
],
gt_boxes
=
feed_vars
[
'gt_box'
],
im_info
=
feed_vars
[
'im_info'
])
rois
=
outs
[
0
]
labels_int32
=
outs
[
1
]
loss
=
self
.
bbox_head
.
get_loss
(
roi_feat
,
labels_int32
,
*
outs
[
2
:])
loss
.
update
(
rpn_loss
)
mask_rois
,
roi_has_mask_int32
,
mask_int32
=
self
.
mask_assigner
(
rois
=
rois
,
gt_classes
=
feed_vars
[
'gt_label'
],
is_crowd
=
feed_vars
[
'is_crowd'
],
gt_segms
=
feed_vars
[
'gt_mask'
],
im_info
=
feed_vars
[
'im_info'
],
labels_int32
=
labels_int32
)
if
self
.
fpn
is
None
:
bbox_head_feat
=
self
.
bbox_head
.
get_head_feat
()
feat
=
fluid
.
layers
.
gather
(
bbox_head_feat
,
roi_has_mask_int32
)
else
:
feat
=
self
.
roi_extractor
(
body_feats
,
mask_rois
,
spatial_scale
,
is_mask
=
True
)
mask_loss
=
self
.
mask_head
.
get_loss
(
feat
,
mask_int32
)
loss
.
update
(
mask_loss
)
total_loss
=
fluid
.
layers
.
sum
(
list
(
loss
.
values
()))
loss
.
update
({
'loss'
:
total_loss
})
return
loss
else
:
feat
=
self
.
roi_extractor
(
body_feats
,
mask_rois
,
spatial_scale
,
True
)
bbox_pred
=
self
.
bbox_head
.
get_prediction
(
roi_feat
,
rois
,
im_info
,
feed_vars
[
'im_shape'
])
bbox_pred
=
bbox_pred
[
'bbox'
]
# share weight
bbox_shape
=
fluid
.
layers
.
shape
(
bbox_pred
)
bbox_size
=
fluid
.
layers
.
reduce_prod
(
bbox_shape
)
bbox_size
=
fluid
.
layers
.
reshape
(
bbox_size
,
[
1
,
1
])
size
=
fluid
.
layers
.
fill_constant
([
1
,
1
],
value
=
6
,
dtype
=
'int32'
)
cond
=
fluid
.
layers
.
less_than
(
x
=
bbox_size
,
y
=
size
)
mask_pred
=
fluid
.
layers
.
create_global_var
(
shape
=
[
1
],
value
=
0.0
,
dtype
=
'float32'
,
persistable
=
False
)
with
fluid
.
layers
.
control_flow
.
Switch
()
as
switch
:
with
switch
.
case
(
cond
):
fluid
.
layers
.
assign
(
input
=
bbox_pred
,
output
=
mask_pred
)
with
switch
.
default
():
bbox
=
fluid
.
layers
.
slice
(
bbox_pred
,
[
1
],
starts
=
[
2
],
ends
=
[
6
])
im_scale
=
fluid
.
layers
.
slice
(
im_info
,
[
1
],
starts
=
[
2
],
ends
=
[
3
])
im_scale
=
fluid
.
layers
.
sequence_expand
(
im_scale
,
bbox
)
mask_rois
=
bbox
*
im_scale
if
self
.
fpn
is
None
:
mask_feat
=
self
.
roi_extractor
(
last_feat
,
mask_rois
)
mask_feat
=
self
.
bbox_head
.
get_head_feat
(
mask_feat
)
else
:
mask_feat
=
self
.
roi_extractor
(
body_feats
,
mask_rois
,
spatial_scale
,
is_mask
=
True
)
mask_out
=
self
.
mask_head
.
get_prediction
(
mask_feat
,
bbox
)
fluid
.
layers
.
assign
(
input
=
mask_out
,
output
=
mask_pred
)
return
{
'bbox'
:
bbox_pred
,
'mask'
:
mask_pred
}
mask_loss
=
self
.
mask_head
.
get_loss
(
feat
,
mask_int32
)
loss
.
update
(
mask_loss
)
def
train
(
self
,
feed_vars
):
return
self
.
build
(
feed_vars
,
'train'
)
total_loss
=
fluid
.
layers
.
sum
(
list
(
loss
.
values
()))
loss
.
update
({
'loss'
:
total_loss
})
return
loss
def
eval
(
self
,
feed_vars
):
return
self
.
build
(
feed_vars
,
'test'
)
def
test
(
self
,
feed_vars
):
im
=
feed_vars
[
'image'
]
im_info
=
feed_vars
[
'im_info'
]
im_shape
=
feed_vars
[
'im_shape'
]
body_feats
=
self
.
backbone
(
im
)
# FPN
if
self
.
fpn
is
not
None
:
body_feats
,
spatial_scale
=
self
.
fpn
.
get_output
(
body_feats
)
rois
=
self
.
rpn_head
.
get_proposals
(
body_feats
,
im_info
,
mode
=
'test'
)
if
self
.
fpn
is
None
:
body_feat
=
body_feats
[
list
(
body_feats
.
keys
())[
-
1
]]
roi_feat
=
self
.
roi_extractor
(
body_feat
,
rois
)
else
:
roi_feat
=
self
.
roi_extractor
(
body_feats
,
rois
,
spatial_scale
,
False
)
bbox_pred
=
self
.
bbox_head
.
get_prediction
(
roi_feat
,
rois
,
im_info
,
im_shape
)
bbox_pred
=
bbox_pred
[
'bbox'
]
# share weight
bbox_shape
=
fluid
.
layers
.
shape
(
bbox_pred
)
bbox_size
=
fluid
.
layers
.
reduce_prod
(
bbox_shape
)
bbox_size
=
fluid
.
layers
.
reshape
(
bbox_size
,
[
1
,
1
])
size
=
fluid
.
layers
.
fill_constant
([
1
,
1
],
value
=
6
,
dtype
=
'int32'
)
cond
=
fluid
.
layers
.
less_than
(
x
=
bbox_size
,
y
=
size
)
mask_pred
=
fluid
.
layers
.
create_global_var
(
shape
=
[
1
],
value
=
0.0
,
dtype
=
'float32'
,
persistable
=
False
)
with
fluid
.
layers
.
control_flow
.
Switch
()
as
switch
:
with
switch
.
case
(
cond
):
fluid
.
layers
.
assign
(
input
=
bbox_pred
,
output
=
mask_pred
)
with
switch
.
default
():
bbox
=
fluid
.
layers
.
slice
(
bbox_pred
,
[
1
],
starts
=
[
2
],
ends
=
[
6
])
im_scale
=
fluid
.
layers
.
slice
(
im_info
,
[
1
],
starts
=
[
2
],
ends
=
[
3
])
im_scale
=
fluid
.
layers
.
sequence_expand
(
im_scale
,
bbox
)
mask_rois
=
bbox
*
im_scale
if
self
.
fpn
is
None
:
mask_feat
=
self
.
roi_extractor
(
body_feat
,
mask_rois
)
mask_feat
=
self
.
bbox_head
.
get_head_feat
(
mask_feat
)
else
:
mask_feat
=
self
.
roi_extractor
(
body_feats
,
mask_rois
,
spatial_scale
,
True
)
mask_out
=
self
.
mask_head
.
get_prediction
(
mask_feat
,
bbox
)
fluid
.
layers
.
assign
(
input
=
mask_out
,
output
=
mask_pred
)
return
{
'bbox'
:
bbox_pred
,
'mask'
:
mask_pred
}
def
eval
(
self
,
feed_vars
):
self
.
test
(
feed_vars
)
return
self
.
build
(
feed_vars
,
'test'
)
PaddleCV/object_detection/ppdet/modeling/architectures/retinanet.py
浏览文件 @
6b09ec35
...
...
@@ -43,7 +43,7 @@ class RetinaNet(object):
self
.
fpn
=
fpn
self
.
retina_head
=
retina_head
def
_forwar
d
(
self
,
feed_vars
,
mode
=
'train'
):
def
buil
d
(
self
,
feed_vars
,
mode
=
'train'
):
im
=
feed_vars
[
'image'
]
im_info
=
feed_vars
[
'im_info'
]
if
mode
==
'train'
:
...
...
@@ -69,10 +69,10 @@ class RetinaNet(object):
return
pred
def
train
(
self
,
feed_vars
):
return
self
.
_forwar
d
(
feed_vars
,
'train'
)
return
self
.
buil
d
(
feed_vars
,
'train'
)
def
eval
(
self
,
feed_vars
):
return
self
.
_forwar
d
(
feed_vars
,
'test'
)
return
self
.
buil
d
(
feed_vars
,
'test'
)
def
test
(
self
,
feed_vars
):
return
self
.
_forwar
d
(
feed_vars
,
'test'
)
return
self
.
buil
d
(
feed_vars
,
'test'
)
PaddleCV/object_detection/ppdet/modeling/architectures/yolov3.py
浏览文件 @
6b09ec35
...
...
@@ -41,7 +41,7 @@ class YOLOv3(object):
self
.
backbone
=
backbone
self
.
yolo_head
=
yolo_head
def
_forwar
d
(
self
,
feed_vars
,
mode
=
'train'
):
def
buil
d
(
self
,
feed_vars
,
mode
=
'train'
):
im
=
feed_vars
[
'image'
]
body_feats
=
self
.
backbone
(
im
)
...
...
@@ -63,10 +63,10 @@ class YOLOv3(object):
return
self
.
yolo_head
.
get_prediction
(
body_feats
,
im_shape
)
def
train
(
self
,
feed_vars
):
return
self
.
_forwar
d
(
feed_vars
,
mode
=
'train'
)
return
self
.
buil
d
(
feed_vars
,
mode
=
'train'
)
def
eval
(
self
,
feed_vars
):
return
self
.
_forwar
d
(
feed_vars
,
mode
=
'test'
)
return
self
.
buil
d
(
feed_vars
,
mode
=
'test'
)
def
test
(
self
,
feed_vars
):
return
self
.
_forwar
d
(
feed_vars
,
mode
=
'test'
)
return
self
.
buil
d
(
feed_vars
,
mode
=
'test'
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录