CycleGAN.py 18.0 KB
Newer Older
L
lvmengsi 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
#copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from network.CycleGAN_network import CycleGAN_model
from util import utility
import paddle.fluid as fluid
L
lvmengsi 已提交
21
import paddle
L
lvmengsi 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
import sys
import time

lambda_A = 10.0
lambda_B = 10.0
lambda_identity = 0.5


class GTrainer():
    def __init__(self, input_A, input_B, cfg, step_per_epoch):
        self.program = fluid.default_main_program().clone()
        with fluid.program_guard(self.program):
            model = CycleGAN_model()
            self.fake_B = model.network_G(input_A, name="GA", cfg=cfg)
            self.fake_B.persistable = True
            self.fake_A = model.network_G(input_B, name="GB", cfg=cfg)
            self.fake_A.persistable = True
            self.cyc_A = model.network_G(self.fake_B, name="GB", cfg=cfg)
            self.cyc_B = model.network_G(self.fake_A, name="GA", cfg=cfg)

            self.infer_program = self.program.clone()
            # Cycle Loss
            diff_A = fluid.layers.abs(
                fluid.layers.elementwise_sub(
                    x=input_A, y=self.cyc_A))
            diff_B = fluid.layers.abs(
                fluid.layers.elementwise_sub(
                    x=input_B, y=self.cyc_B))
            self.cyc_A_loss = fluid.layers.reduce_mean(diff_A) * lambda_A
L
lvmengsi 已提交
51
            self.cyc_A_loss.persistable = True
L
lvmengsi 已提交
52
            self.cyc_B_loss = fluid.layers.reduce_mean(diff_B) * lambda_B
L
lvmengsi 已提交
53
            self.cyc_B_loss.persistable = True
L
lvmengsi 已提交
54 55 56 57 58
            self.cyc_loss = self.cyc_A_loss + self.cyc_B_loss
            # GAN Loss D_A(G_A(A))
            self.fake_rec_A = model.network_D(self.fake_B, name="DA", cfg=cfg)
            self.G_A = fluid.layers.reduce_mean(
                fluid.layers.square(self.fake_rec_A - 1))
L
lvmengsi 已提交
59
            self.G_A.persistable = True
L
lvmengsi 已提交
60 61 62 63
            # GAN Loss D_B(G_B(B))
            self.fake_rec_B = model.network_D(self.fake_A, name="DB", cfg=cfg)
            self.G_B = fluid.layers.reduce_mean(
                fluid.layers.square(self.fake_rec_B - 1))
L
lvmengsi 已提交
64
            self.G_B.persistable = True
L
lvmengsi 已提交
65 66 67 68 69 70 71
            self.G = self.G_A + self.G_B
            # Identity Loss G_A
            self.idt_A = model.network_G(input_B, name="GA", cfg=cfg)
            self.idt_loss_A = fluid.layers.reduce_mean(
                fluid.layers.abs(
                    fluid.layers.elementwise_sub(
                        x=input_B, y=self.idt_A))) * lambda_B * lambda_identity
L
lvmengsi 已提交
72
            self.idt_loss_A.persistable = True
L
lvmengsi 已提交
73 74 75 76 77 78
            # Identity Loss G_B
            self.idt_B = model.network_G(input_A, name="GB", cfg=cfg)
            self.idt_loss_B = fluid.layers.reduce_mean(
                fluid.layers.abs(
                    fluid.layers.elementwise_sub(
                        x=input_A, y=self.idt_B))) * lambda_A * lambda_identity
L
lvmengsi 已提交
79
            self.idt_loss_B.persistable = True
L
lvmengsi 已提交
80 81 82 83 84 85 86 87 88 89 90 91

            self.idt_loss = fluid.layers.elementwise_add(self.idt_loss_A,
                                                         self.idt_loss_B)
            self.g_loss = self.cyc_loss + self.G + self.idt_loss

            vars = []
            for var in self.program.list_vars():
                if fluid.io.is_parameter(var) and (var.name.startswith("GA") or
                                                   var.name.startswith("GB")):
                    vars.append(var.name)
            self.param = vars
            lr = cfg.learning_rate
L
lvmengsi 已提交
92 93 94 95 96 97 98 99
            if cfg.epoch <= 100:
                optimizer = fluid.optimizer.Adam(
                    learning_rate=lr, beta1=0.5, beta2=0.999, name="net_G")
            else:
                optimizer = fluid.optimizer.Adam(
                    learning_rate=fluid.layers.piecewise_decay(
                        boundaries=[99 * step_per_epoch] + [
                            x * step_per_epoch
100
                            for x in range(100, cfg.epoch - 1)
L
lvmengsi 已提交
101 102 103
                        ],
                        values=[lr] + [
                            lr * (1.0 - (x - 99.0) / 101.0)
104
                            for x in range(100, cfg.epoch)
L
lvmengsi 已提交
105 106 107 108
                        ]),
                    beta1=0.5,
                    beta2=0.999,
                    name="net_G")
L
lvmengsi 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122
            optimizer.minimize(self.g_loss, parameter_list=vars)


class DATrainer():
    def __init__(self, input_B, fake_pool_B, cfg, step_per_epoch):
        self.program = fluid.default_main_program().clone()
        with fluid.program_guard(self.program):
            model = CycleGAN_model()
            self.rec_B = model.network_D(input_B, name="DA", cfg=cfg)
            self.fake_pool_rec_B = model.network_D(
                fake_pool_B, name="DA", cfg=cfg)
            self.d_loss_A = (fluid.layers.square(self.fake_pool_rec_B) +
                             fluid.layers.square(self.rec_B - 1)) / 2.0
            self.d_loss_A = fluid.layers.reduce_mean(self.d_loss_A)
L
lvmengsi 已提交
123
            self.d_loss_A.persistable = True
L
lvmengsi 已提交
124 125 126 127 128 129 130 131

            vars = []
            for var in self.program.list_vars():
                if fluid.io.is_parameter(var) and var.name.startswith("DA"):
                    vars.append(var.name)

            self.param = vars
            lr = cfg.learning_rate
L
lvmengsi 已提交
132 133 134 135 136 137 138 139
            if cfg.epoch <= 100:
                optimizer = fluid.optimizer.Adam(
                    learning_rate=lr, beta1=0.5, beta2=0.999, name="net_DA")
            else:
                optimizer = fluid.optimizer.Adam(
                    learning_rate=fluid.layers.piecewise_decay(
                        boundaries=[99 * step_per_epoch] + [
                            x * step_per_epoch
140
                            for x in range(100, cfg.epoch - 1)
L
lvmengsi 已提交
141 142 143
                        ],
                        values=[lr] + [
                            lr * (1.0 - (x - 99.0) / 101.0)
144
                            for x in range(100, cfg.epoch)
L
lvmengsi 已提交
145 146 147 148
                        ]),
                    beta1=0.5,
                    beta2=0.999,
                    name="net_DA")
L
lvmengsi 已提交
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163

            optimizer.minimize(self.d_loss_A, parameter_list=vars)


class DBTrainer():
    def __init__(self, input_A, fake_pool_A, cfg, step_per_epoch):
        self.program = fluid.default_main_program().clone()
        with fluid.program_guard(self.program):
            model = CycleGAN_model()
            self.rec_A = model.network_D(input_A, name="DB", cfg=cfg)
            self.fake_pool_rec_A = model.network_D(
                fake_pool_A, name="DB", cfg=cfg)
            self.d_loss_B = (fluid.layers.square(self.fake_pool_rec_A) +
                             fluid.layers.square(self.rec_A - 1)) / 2.0
            self.d_loss_B = fluid.layers.reduce_mean(self.d_loss_B)
L
lvmengsi 已提交
164
            self.d_loss_B.persistable = True
L
lvmengsi 已提交
165 166 167 168 169 170
            vars = []
            for var in self.program.list_vars():
                if fluid.io.is_parameter(var) and var.name.startswith("DB"):
                    vars.append(var.name)
            self.param = vars
            lr = 0.0002
L
lvmengsi 已提交
171 172 173 174 175 176 177 178
            if cfg.epoch <= 100:
                optimizer = fluid.optimizer.Adam(
                    learning_rate=lr, beta1=0.5, beta2=0.999, name="net_DA")
            else:
                optimizer = fluid.optimizer.Adam(
                    learning_rate=fluid.layers.piecewise_decay(
                        boundaries=[99 * step_per_epoch] + [
                            x * step_per_epoch
179
                            for x in range(100, cfg.epoch - 1)
L
lvmengsi 已提交
180 181 182
                        ],
                        values=[lr] + [
                            lr * (1.0 - (x - 99.0) / 101.0)
183
                            for x in range(100, cfg.epoch)
L
lvmengsi 已提交
184 185 186 187
                        ]),
                    beta1=0.5,
                    beta2=0.999,
                    name="net_DB")
L
lvmengsi 已提交
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
            optimizer.minimize(self.d_loss_B, parameter_list=vars)


class CycleGAN(object):
    def add_special_args(self, parser):
        parser.add_argument(
            '--net_G',
            type=str,
            default="resnet_9block",
            help="Choose the CycleGAN generator's network, choose in [resnet_9block|resnet_6block|unet_128|unet_256]"
        )
        parser.add_argument(
            '--net_D',
            type=str,
            default="basic",
            help="Choose the CycleGAN discriminator's network, choose in [basic|nlayers|pixel]"
        )
        parser.add_argument(
            '--d_nlayers',
            type=int,
            default=3,
            help="only used when CycleGAN discriminator is nlayers")
u010070587's avatar
u010070587 已提交
210 211 212 213
        parser.add_argument(
            '--enable_ce',
            action='store_true',
            help="if set, run the tasks with continuous evaluation logs")
L
lvmengsi 已提交
214 215 216 217 218 219 220 221
        return parser

    def __init__(self,
                 cfg=None,
                 A_reader=None,
                 B_reader=None,
                 A_test_reader=None,
                 B_test_reader=None,
L
lvmengsi 已提交
222 223 224
                 batch_num=1,
                 A_id2name=None,
                 B_id2name=None):
L
lvmengsi 已提交
225 226 227 228 229 230
        self.cfg = cfg
        self.A_reader = A_reader
        self.B_reader = B_reader
        self.A_test_reader = A_test_reader
        self.B_test_reader = B_test_reader
        self.batch_num = batch_num
L
lvmengsi 已提交
231 232
        self.A_id2name = A_id2name
        self.B_id2name = B_id2name
L
lvmengsi 已提交
233 234

    def build_model(self):
L
lvmengsi 已提交
235
        data_shape = [None, 3, self.cfg.crop_size, self.cfg.crop_size]
L
lvmengsi 已提交
236

L
lvmengsi 已提交
237 238 239
        input_A = fluid.data(name='input_A', shape=data_shape, dtype='float32')
        input_B = fluid.data(name='input_B', shape=data_shape, dtype='float32')
        fake_pool_A = fluid.data(
L
lvmengsi 已提交
240
            name='fake_pool_A', shape=data_shape, dtype='float32')
L
lvmengsi 已提交
241
        fake_pool_B = fluid.data(
L
lvmengsi 已提交
242
            name='fake_pool_B', shape=data_shape, dtype='float32')
u010070587's avatar
u010070587 已提交
243 244 245
        # used for continuous evaluation
        if self.cfg.enable_ce:
            fluid.default_startup_program().random_seed = 90
L
lvmengsi 已提交
246

L
lvmengsi 已提交
247 248 249 250 251 252 253 254 255 256 257 258
        A_py_reader = fluid.io.PyReader(
            feed_list=[input_A],
            capacity=4,
            iterable=True,
            use_double_buffer=True)

        B_py_reader = fluid.io.PyReader(
            feed_list=[input_B],
            capacity=4,
            iterable=True,
            use_double_buffer=True)

L
lvmengsi 已提交
259 260 261 262 263 264
        gen_trainer = GTrainer(input_A, input_B, self.cfg, self.batch_num)
        d_A_trainer = DATrainer(input_B, fake_pool_B, self.cfg, self.batch_num)
        d_B_trainer = DBTrainer(input_A, fake_pool_A, self.cfg, self.batch_num)

        # prepare environment
        place = fluid.CUDAPlace(0) if self.cfg.use_gpu else fluid.CPUPlace()
L
lvmengsi 已提交
265

L
lvmengsi 已提交
266 267 268 269 270 271 272 273
        A_py_reader.decorate_batch_generator(
            self.A_reader,
            places=fluid.cuda_places()
            if self.cfg.use_gpu else fluid.cpu_places())
        B_py_reader.decorate_batch_generator(
            self.B_reader,
            places=fluid.cuda_places()
            if self.cfg.use_gpu else fluid.cpu_places())
L
lvmengsi 已提交
274

L
lvmengsi 已提交
275 276 277 278 279 280 281 282 283 284 285 286 287
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())

        A_pool = utility.ImagePool()
        B_pool = utility.ImagePool()

        if self.cfg.init_model:
            utility.init_checkpoints(self.cfg, exe, gen_trainer, "net_G")
            utility.init_checkpoints(self.cfg, exe, d_A_trainer, "net_DA")
            utility.init_checkpoints(self.cfg, exe, d_B_trainer, "net_DB")

        ### memory optim
        build_strategy = fluid.BuildStrategy()
L
lvmengsi 已提交
288
        build_strategy.enable_inplace = True
L
lvmengsi 已提交
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306

        gen_trainer_program = fluid.CompiledProgram(
            gen_trainer.program).with_data_parallel(
                loss_name=gen_trainer.g_loss.name,
                build_strategy=build_strategy)
        d_A_trainer_program = fluid.CompiledProgram(
            d_A_trainer.program).with_data_parallel(
                loss_name=d_A_trainer.d_loss_A.name,
                build_strategy=build_strategy)
        d_B_trainer_program = fluid.CompiledProgram(
            d_B_trainer.program).with_data_parallel(
                loss_name=d_B_trainer.d_loss_B.name,
                build_strategy=build_strategy)

        t_time = 0

        for epoch_id in range(self.cfg.epoch):
            batch_id = 0
L
lvmengsi 已提交
307
            for data_A, data_B in zip(A_py_reader(), B_py_reader()):
L
lvmengsi 已提交
308
                s_time = time.time()
L
lvmengsi 已提交
309 310
                tensor_A, tensor_B = data_A[0]['input_A'], data_B[0]['input_B']
                ## optimize the g_A network
L
lvmengsi 已提交
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
                g_A_loss, g_A_cyc_loss, g_A_idt_loss, g_B_loss, g_B_cyc_loss,\
                g_B_idt_loss, fake_A_tmp, fake_B_tmp = exe.run(
                    gen_trainer_program,
                    fetch_list=[
                        gen_trainer.G_A, gen_trainer.cyc_A_loss,
                        gen_trainer.idt_loss_A, gen_trainer.G_B,
                        gen_trainer.cyc_B_loss, gen_trainer.idt_loss_B,
                        gen_trainer.fake_A, gen_trainer.fake_B
                    ],
                    feed={"input_A": tensor_A,
                          "input_B": tensor_B})

                fake_pool_B = B_pool.pool_image(fake_B_tmp)
                fake_pool_A = A_pool.pool_image(fake_A_tmp)

C
ceci3 已提交
326 327 328 329
                if self.cfg.enable_ce:
                    fake_pool_B = fake_B_tmp
                    fake_pool_A = fake_A_tmp

L
lvmengsi 已提交
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
                # optimize the d_A network
                d_A_loss = exe.run(
                    d_A_trainer_program,
                    fetch_list=[d_A_trainer.d_loss_A],
                    feed={"input_B": tensor_B,
                          "fake_pool_B": fake_pool_B})[0]

                # optimize the d_B network
                d_B_loss = exe.run(
                    d_B_trainer_program,
                    fetch_list=[d_B_trainer.d_loss_B],
                    feed={"input_A": tensor_A,
                          "fake_pool_A": fake_pool_A})[0]

                batch_time = time.time() - s_time
                t_time += batch_time
                if batch_id % self.cfg.print_freq == 0:
                    print("epoch{}: batch{}: \n\
                         d_A_loss: {}; g_A_loss: {}; g_A_cyc_loss: {}; g_A_idt_loss: {}; \n\
                         d_B_loss: {}; g_B_loss: {}; g_B_cyc_loss: {}; g_B_idt_loss: {}; \n\
350
                         Batch_time_cost: {}".format(
L
lvmengsi 已提交
351 352 353 354 355 356
                        epoch_id, batch_id, d_A_loss[0], g_A_loss[0],
                        g_A_cyc_loss[0], g_A_idt_loss[0], d_B_loss[0], g_B_loss[
                            0], g_B_cyc_loss[0], g_B_idt_loss[0], batch_time))

                sys.stdout.flush()
                batch_id += 1
u010070587's avatar
u010070587 已提交
357 358 359
                # used for continuous evaluation
                if self.cfg.enable_ce and batch_id == 10:
                    break
L
lvmengsi 已提交
360 361

            if self.cfg.run_test:
L
lvmengsi 已提交
362 363 364 365
                A_image_name = fluid.data(
                    name='A_image_name', shape=[None, 1], dtype='int32')
                B_image_name = fluid.data(
                    name='B_image_name', shape=[None, 1], dtype='int32')
L
lvmengsi 已提交
366 367 368 369 370 371 372 373 374 375 376 377 378
                A_test_py_reader = fluid.io.PyReader(
                    feed_list=[input_A, A_image_name],
                    capacity=4,
                    iterable=True,
                    use_double_buffer=True)

                B_test_py_reader = fluid.io.PyReader(
                    feed_list=[input_B, B_image_name],
                    capacity=4,
                    iterable=True,
                    use_double_buffer=True)

                A_test_py_reader.decorate_batch_generator(
L
lvmengsi 已提交
379 380 381
                    self.A_test_reader,
                    places=fluid.cuda_places()
                    if self.cfg.use_gpu else fluid.cpu_places())
L
lvmengsi 已提交
382
                B_test_py_reader.decorate_batch_generator(
L
lvmengsi 已提交
383 384 385
                    self.B_test_reader,
                    places=fluid.cuda_places()
                    if self.cfg.use_gpu else fluid.cpu_places())
L
lvmengsi 已提交
386
                test_program = gen_trainer.infer_program
L
lvmengsi 已提交
387 388 389 390 391 392 393 394 395 396 397
                utility.save_test_image(
                    epoch_id,
                    self.cfg,
                    exe,
                    place,
                    test_program,
                    gen_trainer,
                    A_test_py_reader,
                    B_test_py_reader,
                    A_id2name=self.A_id2name,
                    B_id2name=self.B_id2name)
L
lvmengsi 已提交
398 399 400 401 402 403 404 405

            if self.cfg.save_checkpoints:
                utility.checkpoints(epoch_id, self.cfg, exe, gen_trainer,
                                    "net_G")
                utility.checkpoints(epoch_id, self.cfg, exe, d_A_trainer,
                                    "net_DA")
                utility.checkpoints(epoch_id, self.cfg, exe, d_B_trainer,
                                    "net_DB")
u010070587's avatar
u010070587 已提交
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428

        # used for continuous evaluation
        if self.cfg.enable_ce:
            device_num = fluid.core.get_cuda_device_count(
            ) if self.cfg.use_gpu else 1
            print("kpis\tcyclegan_g_A_loss_card{}\t{}".format(device_num,
                                                              g_A_loss[0]))
            print("kpis\tcyclegan_g_A_cyc_loss_card{}\t{}".format(
                device_num, g_A_cyc_loss[0]))
            print("kpis\tcyclegan_g_A_idt_loss_card{}\t{}".format(
                device_num, g_A_idt_loss[0]))
            print("kpis\tcyclegan_d_A_loss_card{}\t{}".format(device_num,
                                                              d_A_loss[0]))
            print("kpis\tcyclegan_g_B_loss_card{}\t{}".format(device_num,
                                                              g_B_loss[0]))
            print("kpis\tcyclegan_g_B_cyc_loss_card{}\t{}".format(
                device_num, g_B_cyc_loss[0]))
            print("kpis\tcyclegan_g_B_idt_loss_card{}\t{}".format(
                device_num, g_B_idt_loss[0]))
            print("kpis\tcyclegan_d_B_loss_card{}\t{}".format(device_num,
                                                              d_B_loss[0]))
            print("kpis\tcyclegan_Batch_time_cost_card{}\t{}".format(
                device_num, batch_time))