box_utils.py 6.6 KB
Newer Older
D
dengkaipeng 已提交
1
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved
D
dengkaipeng 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

import numpy as np

import matplotlib
matplotlib.use('Agg')
from matplotlib import pyplot as plt
from PIL import Image


def coco_anno_box_to_center_relative(box, img_height, img_width):
    """
    Convert COCO annotations box with format [x1, y1, w, h] to 
    center mode [center_x, center_y, w, h] and divide image width
    and height to get relative value in range[0, 1]
    """
    assert len(box) == 4, "box should be a len(4) list or tuple"
    x, y, w, h = box

    x1 = max(x, 0)
D
dengkaipeng 已提交
39
    x2 = min(x + w - 1, img_width - 1)
D
dengkaipeng 已提交
40
    y1 = max(y, 0)
D
dengkaipeng 已提交
41
    y2 = min(y + h - 1, img_height - 1)
D
dengkaipeng 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82

    x = (x1 + x2) / 2 / img_width
    y = (y1 + y2) / 2 / img_height
    w = (x2 - x1) / img_width
    h = (y2 - y1) / img_height

    return np.array([x, y, w, h])

def clip_relative_box_in_image(x, y, w, h):
    """Clip relative box coordinates x, y, w, h to [0, 1]"""
    x1 = max(x - w / 2, 0.)
    x2 = min(x + w / 2, 1.)
    y1 = min(y - h / 2, 0.)
    y2 = max(y + h / 2, 1.)
    x = (x1 + x2) / 2
    y = (y1 + y2) / 2
    w = x2 - x1
    h = y2 - y1

def box_xywh_to_xyxy(box):
    shape = box.shape
    assert shape[-1] == 4, "Box shape[-1] should be 4."

    box = box.reshape((-1, 4))
    box[:, 0], box[:, 2] = box[:, 0] - box[:, 2] / 2, box[:, 0] + box[:, 2] / 2
    box[:, 1], box[:, 3] = box[:, 1] - box[:, 3] / 2, box[:, 1] + box[:, 3] / 2
    box = box.reshape(shape)
    return box

def box_iou_xywh(box1, box2):
    assert box1.shape[-1] == 4, "Box1 shape[-1] should be 4."
    assert box2.shape[-1] == 4, "Box2 shape[-1] should be 4."

    b1_x1, b1_x2 = box1[:, 0] - box1[:, 2] / 2, box1[:, 0] + box1[:, 2] / 2
    b1_y1, b1_y2 = box1[:, 1] - box1[:, 3] / 2, box1[:, 1] + box1[:, 3] / 2
    b2_x1, b2_x2 = box2[:, 0] - box2[:, 2] / 2, box2[:, 0] + box2[:, 2] / 2
    b2_y1, b2_y2 = box2[:, 1] - box2[:, 3] / 2, box2[:, 1] + box2[:, 3] / 2

    inter_x1 = np.maximum(b1_x1, b2_x1)
    inter_x2 = np.minimum(b1_x2, b2_x2)
    inter_y1 = np.maximum(b1_y1, b2_y1)
D
dengkaipeng 已提交
83
    inter_y2 = np.minimum(b1_y2, b2_y2)
D
dengkaipeng 已提交
84 85
    inter_w = inter_x2 - inter_x1 + 1
    inter_h = inter_y2 - inter_y1 + 1
D
dengkaipeng 已提交
86 87
    inter_w[inter_w < 0] = 0
    inter_h[inter_h < 0] = 0
D
dengkaipeng 已提交
88 89 90 91

    inter_area = inter_w * inter_h
    b1_area = (b1_x2 - b1_x1 + 1) * (b1_y2 - b1_y1 + 1)
    b2_area = (b2_x2 - b2_x1 + 1) * (b2_y2 - b2_y1 + 1)
D
dengkaipeng 已提交
92

D
dengkaipeng 已提交
93 94 95 96 97 98 99 100 101 102 103 104
    return inter_area / (b1_area + b2_area - inter_area)

def box_iou_xyxy(box1, box2):
    assert box1.shape[-1] == 4, "Box1 shape[-1] should be 4."
    assert box2.shape[-1] == 4, "Box2 shape[-1] should be 4."

    b1_x1, b1_y1, b1_x2, b1_y2 = box1[:, 0], box1[:, 1], box1[:, 2], box1[:, 3]
    b2_x1, b2_y1, b2_x2, b2_y2 = box2[:, 0], box2[:, 1], box2[:, 2], box2[:, 3]

    inter_x1 = np.maximum(b1_x1, b2_x1)
    inter_x2 = np.minimum(b1_x2, b2_x2)
    inter_y1 = np.maximum(b1_y1, b2_y1)
D
dengkaipeng 已提交
105 106 107 108 109
    inter_y2 = np.minimum(b1_y2, b2_y2)
    inter_w = inter_x2 - inter_x1
    inter_h = inter_y2 - inter_y1
    inter_w[inter_w < 0] = 0
    inter_h[inter_h < 0] = 0
D
dengkaipeng 已提交
110 111

    inter_area = inter_w * inter_h
D
dengkaipeng 已提交
112 113
    b1_area = (b1_x2 - b1_x1) * (b1_y2 - b1_y1)
    b2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1)
D
dengkaipeng 已提交
114

D
dengkaipeng 已提交
115
    return inter_area / (b1_area + b2_area - inter_area)
D
dengkaipeng 已提交
116

D
dengkaipeng 已提交
117
def box_crop(boxes, labels, scores, crop, img_shape):
D
dengkaipeng 已提交
118 119 120 121 122 123 124 125
    x, y, w, h = map(float, crop)
    im_w, im_h = map(float, img_shape)

    boxes = boxes.copy()
    boxes[:, 0], boxes[:, 2] = (boxes[:, 0] - boxes[:, 2] / 2) * im_w, (boxes[:, 0] + boxes[:, 2] / 2) * im_w
    boxes[:, 1], boxes[:, 3] = (boxes[:, 1] - boxes[:, 3] / 2) * im_h, (boxes[:, 1] + boxes[:, 3] / 2) * im_h

    crop_box = np.array([x, y, x + w, y + h])
126 127
    centers = (boxes[:, :2] + boxes[:, 2:]) / 2.0
    mask = np.logical_and(crop_box[:2] <= centers, centers <= crop_box[2:]).all(axis=1)
D
dengkaipeng 已提交
128 129 130 131 132 133

    boxes[:, :2] = np.maximum(boxes[:, :2], crop_box[:2])
    boxes[:, 2:] = np.minimum(boxes[:, 2:], crop_box[2:])
    boxes[:, :2] -= crop_box[:2]
    boxes[:, 2:] -= crop_box[:2]

134
    mask = np.logical_and(mask, (boxes[:, :2] < boxes[:, 2:]).all(axis=1))
D
dengkaipeng 已提交
135 136
    boxes = boxes * np.expand_dims(mask.astype('float32'), axis=1)
    labels = labels * mask.astype('float32')
D
dengkaipeng 已提交
137
    scores = scores * mask.astype('float32')
D
dengkaipeng 已提交
138 139 140
    boxes[:, 0], boxes[:, 2] = (boxes[:, 0] + boxes[:, 2]) / 2 / w, (boxes[:, 2] - boxes[:, 0]) / w
    boxes[:, 1], boxes[:, 3] = (boxes[:, 1] + boxes[:, 3]) / 2 / h, (boxes[:, 3] - boxes[:, 1]) / h

D
dengkaipeng 已提交
141
    return boxes, labels, scores, mask.sum()
D
dengkaipeng 已提交
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178

def draw_boxes_on_image(image_path, boxes, scores, labels, label_names, score_thresh=0.5):
    image = np.array(Image.open(image_path))
    plt.figure()
    _, ax = plt.subplots(1)
    ax.imshow(image)

    image_name = image_path.split('/')[-1]
    print("Image {} detect: ".format(image_name))
    colors = {}
    for box, score, label in zip(boxes, scores, labels):
        if score < score_thresh:
            continue
        if box[2] <= box[0] or box[3] <= box[1]:
            continue
        label = int(label)
        if label not in colors:
            colors[label] = plt.get_cmap('hsv')(label / len(label_names))
        x1, y1, x2, y2 = box[0], box[1], box[2], box[3]
        rect = plt.Rectangle((x1, y1), x2 - x1, y2 - y1, 
                            fill=False, linewidth=2.0, 
                            edgecolor=colors[label])
        ax.add_patch(rect)
        ax.text(x1, y1, '{} {:.4f}'.format(label_names[label], score), 
                verticalalignment='bottom', horizontalalignment='left',
                bbox={'facecolor': colors[label], 'alpha': 0.5, 'pad': 0},
                fontsize=8, color='white')
        print("\t {:15s} at {:25} score: {:.5f}".format(label_names[int(label)], map(int, list(box)), score))
    image_name = image_name.replace('jpg', 'png')
    plt.axis('off')
    plt.gca().xaxis.set_major_locator(plt.NullLocator())
    plt.gca().yaxis.set_major_locator(plt.NullLocator())
    plt.savefig("./output/{}".format(image_name), bbox_inches='tight', pad_inches=0.0)
    print("Detect result save at ./output/{}\n".format(image_name))
    plt.cla()
    plt.close('all')