Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
6c19ddfd
M
models
项目概览
PaddlePaddle
/
models
1 年多 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
6c19ddfd
编写于
3月 06, 2019
作者:
D
dengkaipeng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
use yolo_box op
上级
635ca681
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
62 addition
and
218 deletion
+62
-218
fluid/PaddleCV/yolov3/box_utils.py
fluid/PaddleCV/yolov3/box_utils.py
+2
-185
fluid/PaddleCV/yolov3/eval.py
fluid/PaddleCV/yolov3/eval.py
+24
-23
fluid/PaddleCV/yolov3/infer.py
fluid/PaddleCV/yolov3/infer.py
+9
-7
fluid/PaddleCV/yolov3/models.py
fluid/PaddleCV/yolov3/models.py
+26
-2
fluid/PaddleCV/yolov3/reader.py
fluid/PaddleCV/yolov3/reader.py
+1
-1
未找到文件。
fluid/PaddleCV/yolov3/box_utils.py
浏览文件 @
6c19ddfd
...
...
@@ -26,10 +26,6 @@ from matplotlib import pyplot as plt
from
PIL
import
Image
def
sigmoid
(
x
):
"""Perform sigmoid to input numpy array"""
return
1.0
/
(
1.0
+
np
.
exp
(
-
1.0
*
x
))
def
coco_anno_box_to_center_relative
(
box
,
img_height
,
img_width
):
"""
Convert COCO annotations box with format [x1, y1, w, h] to
...
...
@@ -93,7 +89,7 @@ def box_iou_xywh(box1, box2):
inter_area
=
inter_w
*
inter_h
b1_area
=
(
b1_x2
-
b1_x1
+
1
)
*
(
b1_y2
-
b1_y1
+
1
)
b2_area
=
(
b2_x2
-
b2_x1
+
1
)
*
(
b2_y2
-
b2_y1
+
1
)
return
inter_area
/
(
b1_area
+
b2_area
-
inter_area
)
def
box_iou_xyxy
(
box1
,
box2
):
...
...
@@ -115,32 +111,8 @@ def box_iou_xyxy(box1, box2):
inter_area
=
inter_w
*
inter_h
b1_area
=
(
b1_x2
-
b1_x1
)
*
(
b1_y2
-
b1_y1
)
b2_area
=
(
b2_x2
-
b2_x1
)
*
(
b2_y2
-
b2_y1
)
return
inter_area
/
(
b1_area
+
b2_area
-
inter_area
)
def
rescale_box_in_input_image
(
boxes
,
im_shape
,
input_size
):
"""Scale (x1, x2, y1, y2) box of yolo output to input image"""
h
,
w
=
im_shape
# max_dim = max(h , w)
# boxes = boxes * max_dim / input_size
# dim_diff = np.abs(h - w)
# pad = dim_diff // 2
# if h <= w:
# boxes[:, 1] -= pad
# boxes[:, 3] -= pad
# else:
# boxes[:, 0] -= pad
# boxes[:, 2] -= pad
fx
=
w
/
input_size
fy
=
h
/
input_size
boxes
[:,
0
]
*=
fx
boxes
[:,
1
]
*=
fy
boxes
[:,
2
]
*=
fx
boxes
[:,
3
]
*=
fy
boxes
[
boxes
<
0
]
=
0
boxes
[:,
2
][
boxes
[:,
2
]
>
(
w
-
1
)]
=
w
-
1
boxes
[:,
3
][
boxes
[:,
3
]
>
(
h
-
1
)]
=
h
-
1
return
boxes
return
inter_area
/
(
b1_area
+
b2_area
-
inter_area
)
def
box_crop
(
boxes
,
labels
,
scores
,
crop
,
img_shape
):
x
,
y
,
w
,
h
=
map
(
float
,
crop
)
...
...
@@ -169,161 +141,6 @@ def box_crop(boxes, labels, scores, crop, img_shape):
return
boxes
,
labels
,
scores
,
mask
.
sum
()
def
get_yolo_detection
(
preds
,
anchors
,
class_num
,
img_width
,
img_height
):
"""Get yolo box, confidence score, class label from Darknet53 output"""
preds_n
=
np
.
array
(
preds
)
n
,
c
,
h
,
w
=
preds_n
.
shape
anchor_num
=
len
(
anchors
)
//
2
preds_n
=
preds_n
.
reshape
([
n
,
anchor_num
,
class_num
+
5
,
h
,
w
])
\
.
transpose
((
0
,
1
,
3
,
4
,
2
))
preds_n
[:,
:,
:,
:,
:
2
]
=
sigmoid
(
preds_n
[:,
:,
:,
:,
:
2
])
preds_n
[:,
:,
:,
:,
4
:]
=
sigmoid
(
preds_n
[:,
:,
:,
:,
4
:])
pred_boxes
=
preds_n
[:,
:,
:,
:,
:
4
]
pred_confs
=
preds_n
[:,
:,
:,
:,
4
]
pred_scores
=
preds_n
[:,
:,
:,
:,
5
:]
*
np
.
expand_dims
(
pred_confs
,
axis
=
4
)
grid_x
=
np
.
tile
(
np
.
arange
(
w
).
reshape
((
1
,
w
)),
(
h
,
1
))
grid_y
=
np
.
tile
(
np
.
arange
(
h
).
reshape
((
h
,
1
)),
(
1
,
w
))
anchors
=
[(
anchors
[
i
],
anchors
[
i
+
1
])
for
i
in
range
(
0
,
len
(
anchors
),
2
)]
anchors_s
=
np
.
array
([(
an_w
,
an_h
)
for
an_w
,
an_h
in
anchors
])
anchor_w
=
anchors_s
[:,
0
:
1
].
reshape
((
1
,
anchor_num
,
1
,
1
))
anchor_h
=
anchors_s
[:,
1
:
2
].
reshape
((
1
,
anchor_num
,
1
,
1
))
pred_boxes
[:,
:,
:,
:,
0
]
+=
grid_x
pred_boxes
[:,
:,
:,
:,
1
]
+=
grid_y
pred_boxes
[:,
:,
:,
:,
2
]
=
np
.
exp
(
pred_boxes
[:,
:,
:,
:,
2
])
*
anchor_w
pred_boxes
[:,
:,
:,
:,
3
]
=
np
.
exp
(
pred_boxes
[:,
:,
:,
:,
3
])
*
anchor_h
pred_boxes
[:,
:,
:,
:,
0
]
=
pred_boxes
[:,
:,
:,
:,
0
]
*
img_width
/
w
pred_boxes
[:,
:,
:,
:,
1
]
=
pred_boxes
[:,
:,
:,
:,
1
]
*
img_height
/
h
pred_boxes
[:,
:,
:,
:,
2
]
=
pred_boxes
[:,
:,
:,
:,
2
]
pred_boxes
[:,
:,
:,
:,
3
]
=
pred_boxes
[:,
:,
:,
:,
3
]
pred_boxes
=
box_xywh_to_xyxy
(
pred_boxes
)
pred_boxes
=
np
.
tile
(
np
.
expand_dims
(
pred_boxes
,
axis
=
4
),
(
1
,
1
,
1
,
1
,
class_num
,
1
))
pred_labels
=
np
.
zeros_like
(
pred_scores
)
+
np
.
arange
(
class_num
)
return
(
pred_boxes
.
reshape
((
n
,
-
1
,
4
)),
pred_scores
.
reshape
((
n
,
-
1
)),
pred_labels
.
reshape
((
n
,
-
1
)),
)
def
get_all_yolo_pred
(
outputs
,
yolo_anchors
,
yolo_classes
,
input_shape
):
all_pred_boxes
=
[]
all_pred_scores
=
[]
all_pred_labels
=
[]
for
output
,
anchors
,
classes
in
zip
(
outputs
,
yolo_anchors
,
yolo_classes
):
pred_boxes
,
pred_scores
,
pred_labels
=
get_yolo_detection
(
output
,
anchors
,
classes
,
input_shape
[
0
],
input_shape
[
1
])
all_pred_boxes
.
append
(
pred_boxes
)
all_pred_labels
.
append
(
pred_labels
)
all_pred_scores
.
append
(
pred_scores
)
pred_boxes
=
np
.
concatenate
(
all_pred_boxes
,
axis
=
1
)
pred_scores
=
np
.
concatenate
(
all_pred_scores
,
axis
=
1
)
pred_labels
=
np
.
concatenate
(
all_pred_labels
,
axis
=
1
)
return
(
pred_boxes
,
pred_scores
,
pred_labels
)
def
calc_nms_box_new
(
pred_boxes
,
pred_scores
,
pred_labels
,
valid_thresh
=
0.01
,
nms_thresh
=
0.4
,
nms_topk
=
400
,
nms_posk
=
100
):
output_boxes
=
np
.
empty
((
0
,
4
))
output_scores
=
np
.
empty
(
0
)
output_labels
=
np
.
empty
(
0
)
for
boxes
,
labels
,
scores
in
zip
(
pred_boxes
,
pred_labels
,
pred_scores
):
valid_mask
=
scores
>
valid_thresh
boxes
=
boxes
[
valid_mask
]
scores
=
scores
[
valid_mask
]
labels
=
labels
[
valid_mask
]
score_sort_index
=
np
.
argsort
(
scores
)[::
-
1
]
boxes
=
boxes
[
score_sort_index
][:
nms_topk
]
scores
=
scores
[
score_sort_index
][:
nms_topk
]
labels
=
labels
[
score_sort_index
][:
nms_topk
]
for
c
in
np
.
unique
(
labels
):
c_mask
=
labels
==
c
c_boxes
=
boxes
[
c_mask
]
c_scores
=
scores
[
c_mask
]
detect_boxes
=
[]
detect_scores
=
[]
detect_labels
=
[]
while
c_boxes
.
shape
[
0
]:
detect_boxes
.
append
(
c_boxes
[
0
])
detect_scores
.
append
(
c_scores
[
0
])
detect_labels
.
append
(
c
)
if
c_boxes
.
shape
[
0
]
==
1
:
break
iou
=
box_iou_xyxy
(
detect_boxes
[
-
1
].
reshape
((
1
,
4
)),
c_boxes
[
1
:])
c_boxes
=
c_boxes
[
1
:][
iou
<
nms_thresh
]
c_scores
=
c_scores
[
1
:][
iou
<
nms_thresh
]
output_boxes
=
np
.
append
(
output_boxes
,
detect_boxes
,
axis
=
0
)
output_scores
=
np
.
append
(
output_scores
,
detect_scores
)
output_labels
=
np
.
append
(
output_labels
,
detect_labels
)
return
(
output_boxes
,
output_scores
,
output_labels
)
def
calc_nms_box
(
pred_boxes
,
pred_confs
,
pred_labels
,
im_shape
,
input_size
,
valid_thresh
=
0.8
,
nms_thresh
=
0.4
,
nms_topk
=
400
,
nms_posk
=
100
):
"""
Removes detections which confidence score under valid_thresh and perform
Non-Maximun Suppression to filtered boxes
"""
_
,
box_num
,
class_num
=
pred_labels
.
shape
pred_boxes
=
box_xywh_to_xyxy
(
pred_boxes
)
output_boxes
=
np
.
empty
((
0
,
4
))
output_scores
=
np
.
empty
(
0
)
output_labels
=
np
.
empty
((
0
))
for
i
,
(
boxes
,
confs
,
classes
)
in
enumerate
(
zip
(
pred_boxes
,
pred_confs
,
pred_labels
)):
conf_mask
=
confs
>
valid_thresh
if
conf_mask
.
sum
()
==
0
:
continue
boxes
=
boxes
[
conf_mask
]
classes
=
classes
[
conf_mask
]
confs
=
confs
[
conf_mask
]
conf_sort_index
=
np
.
argsort
(
confs
)[::
-
1
]
boxes
=
boxes
[
conf_sort_index
][:
nms_topk
]
classes
=
classes
[
conf_sort_index
][:
nms_topk
]
confs
=
confs
[
conf_sort_index
][:
nms_topk
]
cls_score
=
np
.
max
(
classes
,
axis
=
1
)
cls_pred
=
np
.
argmax
(
classes
,
axis
=
1
)
for
c
in
np
.
unique
(
cls_pred
):
c_mask
=
cls_pred
==
c
c_confs
=
confs
[
c_mask
]
c_boxes
=
boxes
[
c_mask
]
c_scores
=
cls_score
[
c_mask
]
c_score_index
=
np
.
argsort
(
c_scores
)
c_boxes_s
=
c_boxes
[
c_score_index
[::
-
1
]]
c_confs_s
=
c_confs
[
c_score_index
[::
-
1
]]
c_scores_s
=
c_scores
[
c_score_index
[::
-
1
]]
detect_boxes
=
[]
detect_scores
=
[]
detect_labels
=
[]
while
c_boxes_s
.
shape
[
0
]:
detect_boxes
.
append
(
c_boxes_s
[
0
])
detect_scores
.
append
(
c_scores_s
[
0
])
detect_labels
.
append
(
c
)
if
c_boxes_s
.
shape
[
0
]
==
1
:
break
iou
=
box_iou_xyxy
(
detect_boxes
[
-
1
].
reshape
((
1
,
4
)),
c_boxes_s
[
1
:])
c_boxes_s
=
c_boxes_s
[
1
:][
iou
<
nms_thresh
]
c_confs_s
=
c_confs_s
[
1
:][
iou
<
nms_thresh
]
c_scores_s
=
c_scores_s
[
1
:][
iou
<
nms_thresh
]
output_boxes
=
np
.
append
(
output_boxes
,
detect_boxes
,
axis
=
0
)
output_scores
=
np
.
append
(
output_scores
,
detect_scores
)
output_labels
=
np
.
append
(
output_labels
,
detect_labels
)
output_boxes
=
output_boxes
[:
nms_posk
]
output_scores
=
output_scores
[:
nms_posk
]
output_labels
=
output_labels
[:
nms_posk
]
output_boxes
=
rescale_box_in_input_image
(
output_boxes
,
im_shape
,
input_size
)
return
(
output_boxes
,
output_scores
,
output_labels
)
def
draw_boxes_on_image
(
image_path
,
boxes
,
scores
,
labels
,
label_names
,
score_thresh
=
0.5
):
image
=
np
.
array
(
Image
.
open
(
image_path
))
plt
.
figure
()
...
...
fluid/PaddleCV/yolov3/eval.py
浏览文件 @
6c19ddfd
...
...
@@ -20,7 +20,6 @@ import time
import
numpy
as
np
import
paddle
import
paddle.fluid
as
fluid
import
box_utils
import
reader
import
models
from
utility
import
print_arguments
,
parse_args
...
...
@@ -64,6 +63,8 @@ def eval():
def
get_pred_result
(
boxes
,
scores
,
labels
,
im_id
):
result
=
[]
for
box
,
score
,
label
in
zip
(
boxes
,
scores
,
labels
):
if
score
<
0.05
:
continue
x1
,
y1
,
x2
,
y2
=
box
w
=
x2
-
x1
+
1
h
=
y2
-
y1
+
1
...
...
@@ -72,41 +73,41 @@ def eval():
res
=
{
'image_id'
:
im_id
,
'category_id'
:
label_ids
[
int
(
label
)],
'bbox'
:
bbox
,
'score'
:
score
'bbox'
:
map
(
float
,
bbox
)
,
'score'
:
float
(
score
)
}
result
.
append
(
res
)
return
result
dts_res
=
[]
fetch_list
=
outputs
fetch_list
=
[
outputs
]
total_time
=
0
for
batch_id
,
batch_data
in
enumerate
(
test_reader
()):
start_time
=
time
.
time
()
batch_outputs
=
exe
.
run
(
fetch_list
=
[
v
.
name
for
v
in
fetch_list
],
feed
=
feeder
.
feed
(
batch_data
),
return_numpy
=
False
)
for
data
,
outputs
in
zip
(
batch_data
,
batch_outputs
):
im_id
=
data
[
1
]
im_shape
=
data
[
2
]
pred_boxes
,
pred_scores
,
pred_labels
=
box_utils
.
get_all_yolo_pred
(
batch_outputs
,
yolo_anchors
,
yolo_classes
,
(
input_size
,
input_size
))
boxes
,
scores
,
labels
=
box_utils
.
calc_nms_box_new
(
pred_boxes
,
pred_scores
,
pred_labels
,
cfg
.
valid_thresh
,
cfg
.
nms_thresh
)
boxes
=
box_utils
.
rescale_box_in_input_image
(
boxes
,
im_shape
,
input_size
)
return_numpy
=
False
,
use_program_cache
=
True
)
lod
=
batch_outputs
[
0
].
lod
()[
0
]
nmsed_boxes
=
np
.
array
(
batch_outputs
[
0
])
if
nmsed_boxes
.
shape
[
1
]
!=
6
:
continue
for
i
in
range
(
len
(
lod
)
-
1
):
im_id
=
batch_data
[
i
][
1
]
start
=
lod
[
i
]
end
=
lod
[
i
+
1
]
if
start
==
end
:
continue
nmsed_box
=
nmsed_boxes
[
start
:
end
,
:]
labels
=
nmsed_box
[:,
0
]
scores
=
nmsed_box
[:,
1
]
boxes
=
nmsed_box
[:,
2
:
6
]
dts_res
+=
get_pred_result
(
boxes
,
scores
,
labels
,
im_id
)
end_time
=
time
.
time
()
print
(
"batch id: {}, time: {}"
.
format
(
batch_id
,
end_time
-
start_time
))
total_time
+=
(
end_time
-
start_time
)
if
cfg
.
debug
:
if
'2014'
in
cfg
.
dataset
:
img_name
=
"COCO_val2014_{:012d}.jpg"
.
format
(
im_id
)
box_utils
.
draw_boxes_on_image
(
os
.
path
.
join
(
"./dataset/coco/val2014"
,
img_name
),
boxes
,
scores
,
labels
,
label_names
)
if
'2017'
in
cfg
.
dataset
:
img_name
=
"{:012d}.jpg"
.
format
(
im_id
)
box_utils
.
draw_boxes_on_image
(
os
.
path
.
join
(
"./dataset/coco/val2017"
,
img_name
),
boxes
,
scores
,
labels
,
label_names
)
end_time
=
time
.
time
()
print
(
"batch id: {}, time: {}"
.
format
(
batch_id
,
end_time
-
start_time
))
total_time
+=
end_time
-
start_time
with
open
(
"yolov3_result.json"
,
'w'
)
as
outfile
:
json
.
dump
(
dts_res
,
outfile
)
...
...
fluid/PaddleCV/yolov3/infer.py
浏览文件 @
6c19ddfd
...
...
@@ -34,7 +34,8 @@ def infer():
fluid
.
io
.
load_vars
(
exe
,
cfg
.
pretrained_model
,
predicate
=
if_exist
)
# yapf: enable
feeder
=
fluid
.
DataFeeder
(
place
=
place
,
feed_list
=
model
.
feeds
())
fetch_list
=
outputs
fetch_list
=
[
outputs
]
# fetch_list = outputs
image_names
=
[]
if
cfg
.
image_name
is
not
None
:
image_names
.
append
(
cfg
.
image_name
)
...
...
@@ -50,13 +51,14 @@ def infer():
outputs
=
exe
.
run
(
fetch_list
=
[
v
.
name
for
v
in
fetch_list
],
feed
=
feeder
.
feed
(
data
),
return_numpy
=
True
)
return_numpy
=
False
)
bboxes
=
np
.
array
(
outputs
[
0
])
if
bboxes
.
shape
[
1
]
!=
6
:
print
(
"No object found in {}"
.
format
(
image_name
))
labels
=
bboxes
[:,
0
].
astype
(
'int32'
)
scores
=
bboxes
[:,
1
].
astype
(
'float32'
)
boxes
=
bboxes
[:,
2
:].
astype
(
'float32'
)
pred_boxes
,
pred_scores
,
pred_labels
=
box_utils
.
get_all_yolo_pred
(
outputs
,
yolo_anchors
,
yolo_classes
,
(
input_size
,
input_size
))
boxes
,
scores
,
labels
=
box_utils
.
calc_nms_box_new
(
pred_boxes
,
pred_scores
,
pred_labels
,
cfg
.
valid_thresh
,
cfg
.
nms_thresh
)
boxes
=
box_utils
.
rescale_box_in_input_image
(
boxes
,
im_shape
,
input_size
)
path
=
os
.
path
.
join
(
cfg
.
image_path
,
image_name
)
box_utils
.
draw_boxes_on_image
(
path
,
boxes
,
scores
,
labels
,
label_names
,
cfg
.
draw_thresh
)
...
...
fluid/PaddleCV/yolov3/models.py
浏览文件 @
6c19ddfd
...
...
@@ -99,6 +99,8 @@ class YOLOv3(object):
self
.
use_random
=
use_random
self
.
outputs
=
[]
self
.
losses
=
[]
self
.
boxes
=
[]
self
.
scores
=
[]
self
.
downsample
=
32
def
build_model
(
self
):
...
...
@@ -213,7 +215,19 @@ class YOLOv3(object):
# use_label_smooth=False,
name
=
"yolo_loss"
+
str
(
i
))
self
.
losses
.
append
(
fluid
.
layers
.
reduce_mean
(
loss
))
self
.
downsample
//=
2
else
:
boxes
,
scores
=
fluid
.
layers
.
yolo_box
(
x
=
out
,
img_size
=
self
.
im_shape
,
anchors
=
mask_anchors
,
class_num
=
class_num
,
conf_thresh
=
cfg
.
valid_thresh
,
downsample_ratio
=
self
.
downsample
,
name
=
"yolo_box"
+
str
(
i
))
self
.
boxes
.
append
(
boxes
)
self
.
scores
.
append
(
fluid
.
layers
.
transpose
(
scores
,
perm
=
[
0
,
2
,
1
]))
self
.
downsample
//=
2
layer_outputs
.
append
(
out
)
...
...
@@ -221,7 +235,17 @@ class YOLOv3(object):
return
sum
(
self
.
losses
)
def
get_pred
(
self
):
return
self
.
outputs
yolo_boxes
=
fluid
.
layers
.
concat
(
self
.
boxes
,
axis
=
1
)
yolo_scores
=
fluid
.
layers
.
concat
(
self
.
scores
,
axis
=
2
)
return
fluid
.
layers
.
multiclass_nms
(
bboxes
=
yolo_boxes
,
scores
=
yolo_scores
,
score_threshold
=
cfg
.
valid_thresh
,
nms_top_k
=
cfg
.
nms_topk
,
keep_top_k
=
cfg
.
nms_posk
,
nms_threshold
=
cfg
.
nms_thresh
,
background_label
=-
1
,
name
=
"multiclass_nms"
)
def
get_yolo_anchors
(
self
):
return
self
.
yolo_anchors
...
...
fluid/PaddleCV/yolov3/reader.py
浏览文件 @
6c19ddfd
...
...
@@ -156,7 +156,7 @@ class DataSetReader(object):
h
,
w
,
_
=
im
.
shape
im_scale_x
=
size
/
float
(
w
)
im_scale_y
=
size
/
float
(
h
)
out_img
=
cv2
.
resize
(
im
,
None
,
None
,
fx
=
im_scale_x
,
fy
=
im_scale_y
,
interpolation
=
cv2
.
INTER_
LINEAR
)
out_img
=
cv2
.
resize
(
im
,
None
,
None
,
fx
=
im_scale_x
,
fy
=
im_scale_y
,
interpolation
=
cv2
.
INTER_
CUBIC
)
mean
=
np
.
array
(
mean
).
reshape
((
1
,
1
,
-
1
))
std
=
np
.
array
(
std
).
reshape
((
1
,
1
,
-
1
))
out_img
=
(
out_img
/
255.0
-
mean
)
/
std
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录