Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
5305956e
M
models
项目概览
PaddlePaddle
/
models
大约 2 年 前同步成功
通知
232
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
5305956e
编写于
1月 04, 2019
作者:
D
dengkaipeng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add gtscore
上级
2c3a3b36
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
46 addition
and
28 deletion
+46
-28
fluid/PaddleCV/yolov3/box_utils.py
fluid/PaddleCV/yolov3/box_utils.py
+3
-2
fluid/PaddleCV/yolov3/image_utils.py
fluid/PaddleCV/yolov3/image_utils.py
+21
-12
fluid/PaddleCV/yolov3/models.py
fluid/PaddleCV/yolov3/models.py
+9
-5
fluid/PaddleCV/yolov3/reader.py
fluid/PaddleCV/yolov3/reader.py
+12
-8
fluid/PaddleCV/yolov3/utility.py
fluid/PaddleCV/yolov3/utility.py
+1
-1
未找到文件。
fluid/PaddleCV/yolov3/box_utils.py
浏览文件 @
5305956e
...
@@ -140,7 +140,7 @@ def rescale_box_in_input_image(boxes, im_shape, input_size):
...
@@ -140,7 +140,7 @@ def rescale_box_in_input_image(boxes, im_shape, input_size):
boxes
[
boxes
<
0
]
=
0
boxes
[
boxes
<
0
]
=
0
return
boxes
return
boxes
def
box_crop
(
boxes
,
labels
,
crop
,
img_shape
):
def
box_crop
(
boxes
,
labels
,
scores
,
crop
,
img_shape
):
x
,
y
,
w
,
h
=
map
(
float
,
crop
)
x
,
y
,
w
,
h
=
map
(
float
,
crop
)
im_w
,
im_h
=
map
(
float
,
img_shape
)
im_w
,
im_h
=
map
(
float
,
img_shape
)
...
@@ -160,10 +160,11 @@ def box_crop(boxes, labels, crop, img_shape):
...
@@ -160,10 +160,11 @@ def box_crop(boxes, labels, crop, img_shape):
mask
=
np
.
logical_and
(
mask
,
(
boxes
[:,
:
2
]
<
boxes
[:,
2
:]).
all
(
axis
=
1
))
mask
=
np
.
logical_and
(
mask
,
(
boxes
[:,
:
2
]
<
boxes
[:,
2
:]).
all
(
axis
=
1
))
boxes
=
boxes
*
np
.
expand_dims
(
mask
.
astype
(
'float32'
),
axis
=
1
)
boxes
=
boxes
*
np
.
expand_dims
(
mask
.
astype
(
'float32'
),
axis
=
1
)
labels
=
labels
*
mask
.
astype
(
'float32'
)
labels
=
labels
*
mask
.
astype
(
'float32'
)
scores
=
scores
*
mask
.
astype
(
'float32'
)
boxes
[:,
0
],
boxes
[:,
2
]
=
(
boxes
[:,
0
]
+
boxes
[:,
2
])
/
2
/
w
,
(
boxes
[:,
2
]
-
boxes
[:,
0
])
/
w
boxes
[:,
0
],
boxes
[:,
2
]
=
(
boxes
[:,
0
]
+
boxes
[:,
2
])
/
2
/
w
,
(
boxes
[:,
2
]
-
boxes
[:,
0
])
/
w
boxes
[:,
1
],
boxes
[:,
3
]
=
(
boxes
[:,
1
]
+
boxes
[:,
3
])
/
2
/
h
,
(
boxes
[:,
3
]
-
boxes
[:,
1
])
/
h
boxes
[:,
1
],
boxes
[:,
3
]
=
(
boxes
[:,
1
]
+
boxes
[:,
3
])
/
2
/
h
,
(
boxes
[:,
3
]
-
boxes
[:,
1
])
/
h
return
boxes
,
labels
,
mask
.
sum
()
return
boxes
,
labels
,
scores
,
mask
.
sum
()
def
get_yolo_detection
(
preds
,
anchors
,
class_num
,
img_width
,
img_height
):
def
get_yolo_detection
(
preds
,
anchors
,
class_num
,
img_width
,
img_height
):
"""Get yolo box, confidence score, class label from Darknet53 output"""
"""Get yolo box, confidence score, class label from Darknet53 output"""
...
...
fluid/PaddleCV/yolov3/image_utils.py
浏览文件 @
5305956e
...
@@ -51,7 +51,7 @@ def random_distort(img):
...
@@ -51,7 +51,7 @@ def random_distort(img):
return
img
return
img
def
random_crop
(
img
,
boxes
,
labels
,
scales
=
[
0.3
,
1.0
],
max_ratio
=
2.0
,
constraints
=
None
,
max_trial
=
50
):
def
random_crop
(
img
,
boxes
,
labels
,
sc
ores
,
sc
ales
=
[
0.3
,
1.0
],
max_ratio
=
2.0
,
constraints
=
None
,
max_trial
=
50
):
if
len
(
boxes
)
==
0
:
if
len
(
boxes
)
==
0
:
return
img
,
boxes
return
img
,
boxes
...
@@ -65,7 +65,7 @@ def random_crop(img, boxes, labels, scales=[0.3, 1.0], max_ratio=2.0, constraint
...
@@ -65,7 +65,7 @@ def random_crop(img, boxes, labels, scales=[0.3, 1.0], max_ratio=2.0, constraint
(
0.0
,
1.0
)]
(
0.0
,
1.0
)]
img
=
Image
.
fromarray
(
img
)
img
=
Image
.
fromarray
(
img
)
w
,
h
=
map
(
float
,
img
.
size
)
w
,
h
=
img
.
size
crops
=
[(
0
,
0
,
w
,
h
)]
crops
=
[(
0
,
0
,
w
,
h
)]
for
min_iou
,
max_iou
in
constraints
:
for
min_iou
,
max_iou
in
constraints
:
for
_
in
range
(
max_trial
):
for
_
in
range
(
max_trial
):
...
@@ -79,8 +79,8 @@ def random_crop(img, boxes, labels, scales=[0.3, 1.0], max_ratio=2.0, constraint
...
@@ -79,8 +79,8 @@ def random_crop(img, boxes, labels, scales=[0.3, 1.0], max_ratio=2.0, constraint
crop_box
=
np
.
array
([[
crop_box
=
np
.
array
([[
(
crop_x
+
crop_w
/
2.0
)
/
w
,
(
crop_x
+
crop_w
/
2.0
)
/
w
,
(
crop_y
+
crop_h
/
2.0
)
/
h
,
(
crop_y
+
crop_h
/
2.0
)
/
h
,
crop_w
/
w
,
crop_w
/
float
(
w
)
,
crop_h
/
h
crop_h
/
float
(
h
)
]])
]])
iou
=
box_utils
.
box_iou_xywh
(
crop_box
,
boxes
)
iou
=
box_utils
.
box_iou_xywh
(
crop_box
,
boxes
)
...
@@ -90,14 +90,14 @@ def random_crop(img, boxes, labels, scales=[0.3, 1.0], max_ratio=2.0, constraint
...
@@ -90,14 +90,14 @@ def random_crop(img, boxes, labels, scales=[0.3, 1.0], max_ratio=2.0, constraint
while
crops
:
while
crops
:
crop
=
crops
.
pop
(
np
.
random
.
randint
(
0
,
len
(
crops
)))
crop
=
crops
.
pop
(
np
.
random
.
randint
(
0
,
len
(
crops
)))
crop_boxes
,
crop_labels
,
box_num
=
box_utils
.
box_crop
(
boxes
,
label
s
,
crop
,
(
w
,
h
))
crop_boxes
,
crop_labels
,
crop_scores
,
box_num
=
box_utils
.
box_crop
(
boxes
,
labels
,
score
s
,
crop
,
(
w
,
h
))
if
box_num
<
1
:
if
box_num
<
1
:
continue
continue
img
=
img
.
crop
((
crop
[
0
],
crop
[
1
],
crop
[
0
]
+
crop
[
2
],
crop
[
1
]
+
crop
[
3
])).
resize
(
img
.
size
,
Image
.
LANCZOS
)
img
=
img
.
crop
((
crop
[
0
],
crop
[
1
],
crop
[
0
]
+
crop
[
2
],
crop
[
1
]
+
crop
[
3
])).
resize
(
img
.
size
,
Image
.
LANCZOS
)
img
=
np
.
asarray
(
img
)
img
=
np
.
asarray
(
img
)
return
img
,
crop_boxes
,
crop_labels
return
img
,
crop_boxes
,
crop_labels
,
crop_scores
img
=
np
.
asarray
(
img
)
img
=
np
.
asarray
(
img
)
return
img
,
boxes
,
labels
return
img
,
boxes
,
labels
,
scores
def
random_flip
(
img
,
gtboxes
,
thresh
=
0.5
):
def
random_flip
(
img
,
gtboxes
,
thresh
=
0.5
):
if
random
.
random
()
>
thresh
:
if
random
.
random
()
>
thresh
:
...
@@ -151,13 +151,15 @@ def random_expand(img, gtboxes, max_ratio=4., fill=None, keep_ratio=True, thresh
...
@@ -151,13 +151,15 @@ def random_expand(img, gtboxes, max_ratio=4., fill=None, keep_ratio=True, thresh
return
out_img
.
astype
(
'uint8'
),
gtboxes
return
out_img
.
astype
(
'uint8'
),
gtboxes
def
image_mixup
(
img1
,
gtboxes1
,
gtlabels1
,
img2
,
gtboxes2
,
gtlabel
s2
):
def
image_mixup
(
img1
,
gtboxes1
,
gtlabels1
,
gtscores1
,
img2
,
gtboxes2
,
gtlabels2
,
gtscore
s2
):
factor
=
np
.
random
.
beta
(
1.5
,
1.5
)
factor
=
np
.
random
.
beta
(
1.5
,
1.5
)
factor
=
max
(
0.0
,
min
(
1.0
,
factor
))
factor
=
max
(
0.0
,
min
(
1.0
,
factor
))
if
factor
>=
1.0
:
if
factor
>=
1.0
:
return
img1
,
gtboxes1
,
gtlabels1
return
img1
,
gtboxes1
,
gtlabels1
if
factor
<=
0.0
:
if
factor
<=
0.0
:
return
img2
,
gtboxes2
,
gtlabels2
return
img2
,
gtboxes2
,
gtlabels2
gtscores1
=
gtscores1
*
factor
gtscores2
=
gtscores2
*
(
1.0
-
factor
)
h
=
max
(
img1
.
shape
[
0
],
img2
.
shape
[
0
])
h
=
max
(
img1
.
shape
[
0
],
img2
.
shape
[
0
])
w
=
max
(
img1
.
shape
[
1
],
img2
.
shape
[
1
])
w
=
max
(
img1
.
shape
[
1
],
img2
.
shape
[
1
])
...
@@ -166,10 +168,12 @@ def image_mixup(img1, gtboxes1, gtlabels1, img2, gtboxes2, gtlabels2):
...
@@ -166,10 +168,12 @@ def image_mixup(img1, gtboxes1, gtlabels1, img2, gtboxes2, gtlabels2):
img
[:
img2
.
shape
[
0
],
:
img2
.
shape
[
1
],
:]
+=
img2
.
astype
(
'float32'
)
*
(
1.0
-
factor
)
img
[:
img2
.
shape
[
0
],
:
img2
.
shape
[
1
],
:]
+=
img2
.
astype
(
'float32'
)
*
(
1.0
-
factor
)
gtboxes
=
np
.
zeros_like
(
gtboxes1
)
gtboxes
=
np
.
zeros_like
(
gtboxes1
)
gtlabels
=
np
.
zeros_like
(
gtlabels1
)
gtlabels
=
np
.
zeros_like
(
gtlabels1
)
gtscores
=
np
.
zeros_like
(
gtscores1
)
gt_valid_mask1
=
np
.
logical_and
(
gtboxes1
[:,
2
]
>
0
,
gtboxes1
[:,
3
]
>
0
)
gt_valid_mask1
=
np
.
logical_and
(
gtboxes1
[:,
2
]
>
0
,
gtboxes1
[:,
3
]
>
0
)
gtboxes1
=
gtboxes1
[
gt_valid_mask1
]
gtboxes1
=
gtboxes1
[
gt_valid_mask1
]
gtlabels1
=
gtlabels1
[
gt_valid_mask1
]
gtlabels1
=
gtlabels1
[
gt_valid_mask1
]
gtscores1
=
gtscores1
[
gt_valid_mask1
]
gtboxes1
[:,
0
]
=
gtboxes1
[:,
0
]
*
img1
.
shape
[
1
]
/
w
gtboxes1
[:,
0
]
=
gtboxes1
[:,
0
]
*
img1
.
shape
[
1
]
/
w
gtboxes1
[:,
1
]
=
gtboxes1
[:,
1
]
*
img1
.
shape
[
0
]
/
h
gtboxes1
[:,
1
]
=
gtboxes1
[:,
1
]
*
img1
.
shape
[
0
]
/
h
gtboxes1
[:,
2
]
=
gtboxes1
[:,
2
]
*
img1
.
shape
[
1
]
/
w
gtboxes1
[:,
2
]
=
gtboxes1
[:,
2
]
*
img1
.
shape
[
1
]
/
w
...
@@ -178,23 +182,28 @@ def image_mixup(img1, gtboxes1, gtlabels1, img2, gtboxes2, gtlabels2):
...
@@ -178,23 +182,28 @@ def image_mixup(img1, gtboxes1, gtlabels1, img2, gtboxes2, gtlabels2):
gt_valid_mask2
=
np
.
logical_and
(
gtboxes2
[:,
2
]
>
0
,
gtboxes2
[:,
3
]
>
0
)
gt_valid_mask2
=
np
.
logical_and
(
gtboxes2
[:,
2
]
>
0
,
gtboxes2
[:,
3
]
>
0
)
gtboxes2
=
gtboxes2
[
gt_valid_mask2
]
gtboxes2
=
gtboxes2
[
gt_valid_mask2
]
gtlabels2
=
gtlabels2
[
gt_valid_mask2
]
gtlabels2
=
gtlabels2
[
gt_valid_mask2
]
gtscores2
=
gtscores2
[
gt_valid_mask2
]
gtboxes2
[:,
0
]
=
gtboxes2
[:,
0
]
*
img2
.
shape
[
1
]
/
w
gtboxes2
[:,
0
]
=
gtboxes2
[:,
0
]
*
img2
.
shape
[
1
]
/
w
gtboxes2
[:,
1
]
=
gtboxes2
[:,
1
]
*
img2
.
shape
[
0
]
/
h
gtboxes2
[:,
1
]
=
gtboxes2
[:,
1
]
*
img2
.
shape
[
0
]
/
h
gtboxes2
[:,
2
]
=
gtboxes2
[:,
2
]
*
img2
.
shape
[
1
]
/
w
gtboxes2
[:,
2
]
=
gtboxes2
[:,
2
]
*
img2
.
shape
[
1
]
/
w
gtboxes2
[:,
3
]
=
gtboxes2
[:,
3
]
*
img2
.
shape
[
0
]
/
h
gtboxes2
[:,
3
]
=
gtboxes2
[:,
3
]
*
img2
.
shape
[
0
]
/
h
gtboxes_all
=
np
.
concatenate
((
gtboxes1
,
gtboxes2
),
axis
=
0
)
gtboxes_all
=
np
.
concatenate
((
gtboxes1
,
gtboxes2
),
axis
=
0
)
gtlabels_all
=
np
.
concatenate
((
gtlabels1
,
gtlabels2
),
axis
=
0
)
gtlabels_all
=
np
.
concatenate
((
gtlabels1
,
gtlabels2
),
axis
=
0
)
gtscores_all
=
np
.
concatenate
((
gtscores1
,
gtscores2
),
axis
=
0
)
gt_num
=
min
(
len
(
gtboxes
),
len
(
gtboxes_all
))
gt_num
=
min
(
len
(
gtboxes
),
len
(
gtboxes_all
))
gtboxes
[:
gt_num
]
=
gtboxes_all
[:
gt_num
]
gtboxes
[:
gt_num
]
=
gtboxes_all
[:
gt_num
]
gtlabels
[:
gt_num
]
=
gtlabels_all
[:
gt_num
]
gtlabels
[:
gt_num
]
=
gtlabels_all
[:
gt_num
]
return
img
.
astype
(
'uint8'
),
gtboxes
,
gtlabels
gtscores
[:
gt_num
]
=
gtscores_all
[:
gt_num
]
return
img
.
astype
(
'uint8'
),
gtboxes
,
gtlabels
,
gtscores
def
image_augment
(
img
,
gtboxes
,
gtlabels
,
size
,
means
=
None
):
def
image_augment
(
img
,
gtboxes
,
gtlabels
,
gtscores
,
size
,
means
=
None
):
img
=
random_distort
(
img
)
img
=
random_distort
(
img
)
img
,
gtboxes
=
random_expand
(
img
,
gtboxes
,
fill
=
means
)
img
,
gtboxes
=
random_expand
(
img
,
gtboxes
,
fill
=
means
)
img
,
gtboxes
,
gtlabels
=
random_crop
(
img
,
gtboxes
,
gtlabel
s
)
img
,
gtboxes
,
gtlabels
,
gtscores
=
random_crop
(
img
,
gtboxes
,
gtlabels
,
gtscore
s
)
img
=
random_interp
(
img
,
size
)
img
=
random_interp
(
img
,
size
)
img
,
gtboxes
=
random_flip
(
img
,
gtboxes
)
img
,
gtboxes
=
random_flip
(
img
,
gtboxes
)
return
img
.
astype
(
'float32'
),
gtboxes
.
astype
(
'float32'
),
gtlabels
.
astype
(
'int32'
)
return
img
.
astype
(
'float32'
),
gtboxes
.
astype
(
'float32'
),
\
gtlabels
.
astype
(
'int32'
),
gtscores
.
astype
(
'float32'
)
fluid/PaddleCV/yolov3/models.py
浏览文件 @
5305956e
...
@@ -204,6 +204,7 @@ class YOLOv3(object):
...
@@ -204,6 +204,7 @@ class YOLOv3(object):
x
=
out
,
x
=
out
,
gtbox
=
self
.
gtbox
,
gtbox
=
self
.
gtbox
,
gtlabel
=
self
.
gtlabel
,
gtlabel
=
self
.
gtlabel
,
gtscore
=
self
.
gtscore
,
anchors
=
anchors
,
anchors
=
anchors
,
anchor_mask
=
anchor_mask
,
anchor_mask
=
anchor_mask
,
class_num
=
class_num
,
class_num
=
class_num
,
...
@@ -232,11 +233,11 @@ class YOLOv3(object):
...
@@ -232,11 +233,11 @@ class YOLOv3(object):
if
self
.
use_pyreader
and
self
.
is_train
:
if
self
.
use_pyreader
and
self
.
is_train
:
self
.
py_reader
=
fluid
.
layers
.
py_reader
(
self
.
py_reader
=
fluid
.
layers
.
py_reader
(
capacity
=
64
,
capacity
=
64
,
shapes
=
[[
-
1
]
+
self
.
image_shape
,
[
-
1
,
cfg
.
max_box_num
,
4
],
[
-
1
,
cfg
.
max_box_num
]],
shapes
=
[[
-
1
]
+
self
.
image_shape
,
[
-
1
,
cfg
.
max_box_num
,
4
],
[
-
1
,
cfg
.
max_box_num
]
,
[
-
1
,
cfg
.
max_box_num
]
],
lod_levels
=
[
0
,
0
,
0
],
lod_levels
=
[
0
,
0
,
0
,
0
],
dtypes
=
[
'float32'
]
*
2
+
[
'int32'
],
dtypes
=
[
'float32'
]
*
2
+
[
'int32'
]
+
[
'float32'
]
,
use_double_buffer
=
True
)
use_double_buffer
=
True
)
self
.
image
,
self
.
gtbox
,
self
.
gtlabel
=
fluid
.
layers
.
read_file
(
self
.
py_reader
)
self
.
image
,
self
.
gtbox
,
self
.
gtlabel
,
self
.
gtscore
=
fluid
.
layers
.
read_file
(
self
.
py_reader
)
else
:
else
:
self
.
image
=
fluid
.
layers
.
data
(
self
.
image
=
fluid
.
layers
.
data
(
name
=
'image'
,
shape
=
self
.
image_shape
,
dtype
=
'float32'
name
=
'image'
,
shape
=
self
.
image_shape
,
dtype
=
'float32'
...
@@ -247,6 +248,9 @@ class YOLOv3(object):
...
@@ -247,6 +248,9 @@ class YOLOv3(object):
self
.
gtlabel
=
fluid
.
layers
.
data
(
self
.
gtlabel
=
fluid
.
layers
.
data
(
name
=
'gtlabel'
,
shape
=
[
cfg
.
max_box_num
],
dtype
=
'int32'
name
=
'gtlabel'
,
shape
=
[
cfg
.
max_box_num
],
dtype
=
'int32'
)
)
self
.
gtscore
=
fluid
.
layers
.
data
(
name
=
'gtscore'
,
shape
=
[
cfg
.
max_box_num
],
dtype
=
'float32'
)
self
.
im_shape
=
fluid
.
layers
.
data
(
self
.
im_shape
=
fluid
.
layers
.
data
(
name
=
"im_shape"
,
shape
=
[
2
],
dtype
=
'int32'
)
name
=
"im_shape"
,
shape
=
[
2
],
dtype
=
'int32'
)
self
.
im_id
=
fluid
.
layers
.
data
(
self
.
im_id
=
fluid
.
layers
.
data
(
...
@@ -255,7 +259,7 @@ class YOLOv3(object):
...
@@ -255,7 +259,7 @@ class YOLOv3(object):
def
feeds
(
self
):
def
feeds
(
self
):
if
not
self
.
is_train
:
if
not
self
.
is_train
:
return
[
self
.
image
,
self
.
im_id
,
self
.
im_shape
]
return
[
self
.
image
,
self
.
im_id
,
self
.
im_shape
]
return
[
self
.
image
,
self
.
gtbox
,
self
.
gtlabel
]
return
[
self
.
image
,
self
.
gtbox
,
self
.
gtlabel
,
self
.
gtscore
]
def
get_hyperparams
(
self
):
def
get_hyperparams
(
self
):
return
self
.
hyperparams
return
self
.
hyperparams
...
...
fluid/PaddleCV/yolov3/reader.py
浏览文件 @
5305956e
...
@@ -41,7 +41,7 @@ class DataSetReader(object):
...
@@ -41,7 +41,7 @@ class DataSetReader(object):
# cfg.data_dir = "dataset/coco"
# cfg.data_dir = "dataset/coco"
# cfg.train_file_list = 'annotations/instances_val2017.json'
# cfg.train_file_list = 'annotations/instances_val2017.json'
# cfg.train_data_dir = 'val2017'
# cfg.train_data_dir = 'val2017'
cfg
.
dataset
=
"coco2017"
#
cfg.dataset = "coco2017"
if
'coco2014'
in
cfg
.
dataset
:
if
'coco2014'
in
cfg
.
dataset
:
cfg
.
train_file_list
=
'annotations/instances_train2014.json'
cfg
.
train_file_list
=
'annotations/instances_train2014.json'
cfg
.
train_data_dir
=
'train2014'
cfg
.
train_data_dir
=
'train2014'
...
@@ -170,16 +170,20 @@ class DataSetReader(object):
...
@@ -170,16 +170,20 @@ class DataSetReader(object):
im
=
cv2
.
cvtColor
(
im
,
cv2
.
COLOR_BGR2RGB
)
im
=
cv2
.
cvtColor
(
im
,
cv2
.
COLOR_BGR2RGB
)
gt_boxes
=
img
[
'gt_boxes'
].
copy
()
gt_boxes
=
img
[
'gt_boxes'
].
copy
()
gt_labels
=
img
[
'gt_labels'
].
copy
()
gt_labels
=
img
[
'gt_labels'
].
copy
()
gt_scores
=
np
.
ones_like
(
gt_labels
)
if
mixup_img
:
if
mixup_img
:
mixup_im
=
cv2
.
imread
(
mixup_img
[
'image'
])
mixup_im
=
cv2
.
imread
(
mixup_img
[
'image'
])
mixup_im
=
cv2
.
cvtColor
(
mixup_im
,
cv2
.
COLOR_BGR2RGB
)
mixup_im
=
cv2
.
cvtColor
(
mixup_im
,
cv2
.
COLOR_BGR2RGB
)
mixup_gt_boxes
=
mixup_img
[
'gt_boxes'
].
copy
()
mixup_gt_boxes
=
mixup_img
[
'gt_boxes'
].
copy
()
mixup_gt_labels
=
mixup_img
[
'gt_labels'
].
copy
()
mixup_gt_labels
=
mixup_img
[
'gt_labels'
].
copy
()
im
,
gt_boxes
,
gt_labels
=
image_utils
.
image_mixup
(
im
,
gt_boxes
,
gt_labels
,
\
mixup_gt_scores
=
np
.
ones_like
(
mixup_gt_labels
)
mixup_im
,
mixup_gt_boxes
,
mixup_gt_labels
)
im
,
gt_boxes
,
gt_labels
,
gt_scores
=
image_utils
.
image_mixup
(
im
,
gt_boxes
,
\
gt_labels
,
gt_scores
,
mixup_im
,
mixup_gt_boxes
,
mixup_gt_labels
,
\
mixup_gt_scores
)
im
,
gt_boxes
,
gt_labels
,
gt_scores
=
image_utils
.
image_augment
(
im
,
gt_boxes
,
gt_labels
,
gt_scores
,
size
,
mean
)
im
,
gt_boxes
,
gt_labels
=
image_utils
.
image_augment
(
im
,
gt_boxes
,
gt_labels
,
size
,
mean
)
# h, w, _ = im.shape
# h, w, _ = im.shape
# im_scale_x = size / float(w)
# im_scale_x = size / float(w)
# im_scale_y = size / float(h)
# im_scale_y = size / float(h)
...
@@ -190,7 +194,7 @@ class DataSetReader(object):
...
@@ -190,7 +194,7 @@ class DataSetReader(object):
out_img
=
(
im
/
255.0
-
mean
)
/
std
out_img
=
(
im
/
255.0
-
mean
)
/
std
out_img
=
out_img
.
transpose
((
2
,
0
,
1
)).
astype
(
'float32'
)
out_img
=
out_img
.
transpose
((
2
,
0
,
1
)).
astype
(
'float32'
)
return
(
out_img
,
gt_boxes
,
gt_labels
)
return
(
out_img
,
gt_boxes
,
gt_labels
,
gt_scores
)
def
get_img_size
(
size
,
random_sizes
=
[]):
def
get_img_size
(
size
,
random_sizes
=
[]):
if
len
(
random_sizes
):
if
len
(
random_sizes
):
...
@@ -222,9 +226,9 @@ class DataSetReader(object):
...
@@ -222,9 +226,9 @@ class DataSetReader(object):
total_read_cnt
+=
1
total_read_cnt
+=
1
if
read_cnt
%
len
(
imgs
)
==
0
and
shuffle
:
if
read_cnt
%
len
(
imgs
)
==
0
and
shuffle
:
np
.
random
.
shuffle
(
imgs
)
np
.
random
.
shuffle
(
imgs
)
im
,
gt_boxes
,
gt_labels
=
img_reader_with_augment
(
img
,
img_size
,
cfg
.
pixel_means
,
cfg
.
pixel_stds
,
mixup_img
)
im
,
gt_boxes
,
gt_labels
,
gt_scores
=
img_reader_with_augment
(
img
,
img_size
,
cfg
.
pixel_means
,
cfg
.
pixel_stds
,
mixup_img
)
batch_out
.
append
((
im
,
gt_boxes
,
gt_labels
))
batch_out
.
append
((
im
,
gt_boxes
,
gt_labels
,
gt_scores
))
# img_ids.append(
img['id']
)
# img_ids.append(
(img['id'], mixup_img['id'] if mixup_img else -1)
)
if
len
(
batch_out
)
==
batch_size
:
if
len
(
batch_out
)
==
batch_size
:
# print("img_ids: ", img_ids)
# print("img_ids: ", img_ids)
...
...
fluid/PaddleCV/yolov3/utility.py
浏览文件 @
5305956e
...
@@ -112,7 +112,7 @@ def parse_args():
...
@@ -112,7 +112,7 @@ def parse_args():
# TRAIN TEST INFER
# TRAIN TEST INFER
add_arg
(
'input_size'
,
int
,
608
,
"Image input size of YOLOv3."
)
add_arg
(
'input_size'
,
int
,
608
,
"Image input size of YOLOv3."
)
add_arg
(
'random_shape'
,
bool
,
False
,
"Resize to random shape for train reader"
)
add_arg
(
'random_shape'
,
bool
,
False
,
"Resize to random shape for train reader"
)
add_arg
(
'no_mixup_iter'
,
int
,
4000
,
"Disable mixup in last N iter."
)
add_arg
(
'no_mixup_iter'
,
int
,
4000
0
,
"Disable mixup in last N iter."
)
add_arg
(
'valid_thresh'
,
float
,
0.01
,
"Valid confidence score for NMS."
)
add_arg
(
'valid_thresh'
,
float
,
0.01
,
"Valid confidence score for NMS."
)
add_arg
(
'nms_thresh'
,
float
,
0.45
,
"NMS threshold."
)
add_arg
(
'nms_thresh'
,
float
,
0.45
,
"NMS threshold."
)
add_arg
(
'nms_topk'
,
int
,
400
,
"The number of boxes to perform NMS."
)
add_arg
(
'nms_topk'
,
int
,
400
,
"The number of boxes to perform NMS."
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录