README_cn.md 6.7 KB
Newer Older
D
dengkaipeng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# YOLO V3 目标检测

---
## 内容

- [安装](#安装)
- [简介](#简介)
- [数据准备](#数据准备)
- [模型训练](#模型训练)
- [模型评估](#模型评估)
- [模型推断及可视化](#模型推断及可视化)
- [附录](#附录)

## 安装

在当前目录下运行样例代码需要PadddlePaddle Fluid的v.1.1.0或以上的版本。如果你的运行环境中的PaddlePaddle低于此版本,请根据[安装文档](http://www.paddlepaddle.org/documentation/docs/zh/0.15.0/beginners_guide/install/install_doc.html#paddlepaddle)中的说明来更新PaddlePaddle。

## 简介

[YOLOv3](https://arxiv.org/abs/1804.02767) 是一阶段End2End的目标检测器。其目标检测原理如下图所示:
<p align="center">
T
tink2123 已提交
22
<img src="image/YOLOv3.jpg" height=400 width=600 hspace='10'/> <br />
D
dengkaipeng 已提交
23 24 25 26
YOLOv3检测原理
</p>

YOLOv3将输入图像分成S\*S个格子,每个格子预测B个bounding box,每个bounding box预测内容包括: Location(x, y, w, h)、Confidence Score和C个类别的概率,因此YOLOv3输出层的channel数为S\*S\*B\*(5 + C)。YOLOv3的loss函数也有三部分组成:坐标误差,IOU误差和分类误差。
T
tink2123 已提交
27 28

YOLOv3的网络结构如下图所示:
D
dengkaipeng 已提交
29
<p align="center">
T
tink2123 已提交
30
<img src="image/YOLOv3_structure.jpg" height=400 width=400 hspace='10'/> <br />
D
dengkaipeng 已提交
31 32 33
YOLOv3网络结构
</p>

T
tink2123 已提交
34 35 36 37
YOLOv3 的网络结构由基础特征提取网络、multi-scale特征融合层和输出层组成。

1. 特征提取网络。YOLOv3使用 [DarkNet53](https://arxiv.org/abs/1612.08242)作为特征提取网络,DarkNet53 基本采用了全卷积网络,用步长为2的卷积操作替代了池化层,同时添加了 Residual 单元,避免在网络层数过深时发生梯度弥散。

T
tink2123 已提交
38
2. 特征融合层。为了解决之前YOLO版本对小目标不敏感的问题,YOLOv3采用了3个不同尺度的特征图来进行目标检测,分别为13\*13,26\*26,52\*52,用来检测大、中、小三种目标。特征融合层选取 DarkNet 产出的三种尺度特征图作为输入,借鉴了FPN(feature pyramid networks)的思想,通过一系列的卷积层和上采样对各尺度的特征图进行融合。
T
tink2123 已提交
39

T
tink2123 已提交
40
3. 输出层。同样使用了全卷积结构,其中最后一个卷积层的卷积核个数是255:3\*(80+4+1)=255,3表示一个grid cell包含3个bounding box,4表示框的4个坐标信息,1表示Confidence Score,80表示COCO数据集中80个类别的概率。
T
tink2123 已提交
41

D
dengkaipeng 已提交
42 43 44 45 46 47 48 49

## 数据准备

[MS-COCO数据集](http://cocodataset.org/#download)上进行训练,通过如下方式下载数据集。

    cd dataset/coco
    ./download.sh

T
tink2123 已提交
50

D
dengkaipeng 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64
## 模型训练

数据准备完毕后,可以通过如下的方式启动训练:

    python train.py \
       --model_save_dir=output/ \
       --pretrained_model=${path_to_pretrain_model}
       --data_dir=${path_to_data}

- 通过设置export CUDA\_VISIBLE\_DEVICES=0,1,2,3,4,5,6,7指定8卡GPU训练。
- 可选参数见:

    python train.py --help

T
tink2123 已提交
65
**下载预训练模型:** 本示例提供darknet53预训练模型,该模型转换自作者提供的darknet53在ImageNet上预训练的权重,采用如下命令下载预训练模型:
D
dengkaipeng 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86

    sh ./weights/download_pretrained_weight.sh

通过初始化`pretrained_model` 加载预训练模型。同时在参数微调时也采用该设置加载已训练模型。
请在训练前确认预训练模型下载与加载正确,否则训练过程中损失可能会出现NAN。

**安装[cocoapi](https://github.com/cocodataset/cocoapi):**

训练前需要首先下载[cocoapi](https://github.com/cocodataset/cocoapi)

    # COCOAPI=/path/to/clone/cocoapi
    git clone https://github.com/cocodataset/cocoapi.git $COCOAPI
    cd $COCOAPI/PythonAPI
    # if cython is not installed
    pip install Cython
    # Install into global site-packages
    make install
    # Alternatively, if you do not have permissions or prefer
    # not to install the COCO API into global site-packages
    python2 setup.py install --user

T
tink2123 已提交
87 88 89 90 91 92 93 94 95
**数据读取器说明:**

* 数据读取器定义在reader.py中。

**模型设置:**

* 模型使用了基于COCO数据集生成的9个先验框:(10x13),(16x30),(33x23),(30x61),(62x45),(59x119),(116x90),(156x198),(373x326)
* 检测过程中,nms_topk=400, nms_posk=100,nms_thresh=0.4

D
dengkaipeng 已提交
96 97 98
**训练策略:**

*  采用momentum优化算法训练YOLOv3,momentum=0.9。
T
tink2123 已提交
99
*  学习率采用warmup算法,前1000轮学习率从0.0线性增加至0.01。在400000,450000轮时使用0.1,0.1乘子进行学习率衰减,最大训练500000轮。
D
dengkaipeng 已提交
100

T
tink2123 已提交
101 102 103 104 105
下图为模型训练结果:
<p align="center">
<img src="image/train_loss.png" height="500" width="650" hspace="10"/><br />
Train Loss
</p>
D
dengkaipeng 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118

## 模型评估

模型评估是指对训练完毕的模型评估各类性能指标。本示例采用[COCO官方评估](http://cocodataset.org/#detections-eval)

`eval.py`是评估模块的主要执行程序,调用示例如下:

    python eval.py \
        --dataset=coco2017 \
        --pretrained_model=${path_to_pretrain_model} \

- 通过设置export CUDA\_VISIBLE\_DEVICES=0指定单卡GPU评估。

T
tink2123 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
模型评估结果:

```text
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.370
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.581
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.401
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.236
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.403
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.480
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.297
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.450
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.466
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.309
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.500
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.586

```
D
dengkaipeng 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150


## 模型推断及可视化

模型推断可以获取图像中的物体及其对应的类别,`infer.py`是主要执行程序,调用示例如下:

    python infer.py \
       --dataset=coco2017 \
        --pretrained_model=${path_to_pretrain_model}  \
        --image_path=data/COCO17/val2017/  \
        --image_name=000000000139.jpg \
        --draw_threshold=0.5

下图为模型可视化预测结果:
<p align="center">
T
tink2123 已提交
151 152 153 154
<img src="image/000000000139.png" height=300 width=400 hspace='10'/>
<img src="image/000000127517.png" height=300 width=400 hspace='10'/>
<img src="image/000000203864.png" height=300 width=400 hspace='10'/>
<img src="image/000000515077.png" height=300 width=400 hspace='10'/> <br />
D
dengkaipeng 已提交
155 156
YOLOv3 预测可视化
</p>
T
tink2123 已提交
157