提交 dea15bd9 编写于 作者: T tink2123 提交者: dengkaipeng

update reademe

上级 6b77aa91
...@@ -19,7 +19,7 @@ Running sample code in this directory requires PaddelPaddle Fluid v.1.1.0 and la ...@@ -19,7 +19,7 @@ Running sample code in this directory requires PaddelPaddle Fluid v.1.1.0 and la
[YOLOv3](https://arxiv.org/abs/1804.02767) is a one stage end to end detector。the detection principle of YOLOv3 is as follow: [YOLOv3](https://arxiv.org/abs/1804.02767) is a one stage end to end detector。the detection principle of YOLOv3 is as follow:
<p align="center"> <p align="center">
<img src="image/YOLOv3.jpg" height=400 width=400 hspace='10'/> <br /> <img src="image/YOLOv3.jpg" height=400 width=600 hspace='10'/> <br />
YOLOv3 detection principle YOLOv3 detection principle
</p> </p>
...@@ -34,9 +34,9 @@ YOLOv3 networks are composed of base feature extraction network, multi-scale fea ...@@ -34,9 +34,9 @@ YOLOv3 networks are composed of base feature extraction network, multi-scale fea
1. Feature extraction network: YOLOv3 ues [DarkNet53](https://arxiv.org/abs/1612.08242) for feature extracion,Darknet53 uses a full convolution structure, replacing the pooling layer with a convolution operation of step size 2, and adding Residual-block to avoid gradient dispersion when the number of network layers is too deep. 1. Feature extraction network: YOLOv3 ues [DarkNet53](https://arxiv.org/abs/1612.08242) for feature extracion,Darknet53 uses a full convolution structure, replacing the pooling layer with a convolution operation of step size 2, and adding Residual-block to avoid gradient dispersion when the number of network layers is too deep.
2. Feature fusion layer. In order to solve the problem that the previous YOLO version is not sensitive to small objects, YOLOv3 uses three different scale feature maps for target detection, which are 13*13, 26*26, 52*52, respectively, for detecting large, medium and small objects. The feature fusion layer selects the three scale feature maps produced by DarkNet as input, and draws on the idea of FPN (feature pyramid networks) to fuse the feature maps of each scale through a series of convolutional layers and upsampling. 2. Feature fusion layer. In order to solve the problem that the previous YOLO version is not sensitive to small objects, YOLOv3 uses three different scale feature maps for target detection, which are 13\*13, 26\*26, 52\*52, respectively, for detecting large, medium and small objects. The feature fusion layer selects the three scale feature maps produced by DarkNet as input, and draws on the idea of FPN (feature pyramid networks) to fuse the feature maps of each scale through a series of convolutional layers and upsampling.
3. Output layer: The output layer also uses a full convolution structure. The number of convolution kernels in the last convolutional layer is 255:3*(80+4+1)=255, and 3 indicates that a grid cell contains 3 bounding boxes. 4 represents the four coordinate information of the box, 1 represents the Confidence Score, and 80 represents the probability of 80 categories in the COCO dataset. 3. Output layer: The output layer also uses a full convolution structure. The number of convolution kernels in the last convolutional layer is 255:3\*(80+4+1)=255, and 3 indicates that a grid cell contains 3 bounding boxes. 4 represents the four coordinate information of the box, 1 represents the Confidence Score, and 80 represents the probability of 80 categories in the COCO dataset.
## Data preparation ## Data preparation
......
...@@ -19,7 +19,7 @@ ...@@ -19,7 +19,7 @@
[YOLOv3](https://arxiv.org/abs/1804.02767) 是一阶段End2End的目标检测器。其目标检测原理如下图所示: [YOLOv3](https://arxiv.org/abs/1804.02767) 是一阶段End2End的目标检测器。其目标检测原理如下图所示:
<p align="center"> <p align="center">
<img src="image/YOLOv3.jpg" height=400 width=400 hspace='10'/> <br /> <img src="image/YOLOv3.jpg" height=400 width=600 hspace='10'/> <br />
YOLOv3检测原理 YOLOv3检测原理
</p> </p>
...@@ -35,9 +35,9 @@ YOLOv3 的网络结构由基础特征提取网络、multi-scale特征融合层 ...@@ -35,9 +35,9 @@ YOLOv3 的网络结构由基础特征提取网络、multi-scale特征融合层
1. 特征提取网络。YOLOv3使用 [DarkNet53](https://arxiv.org/abs/1612.08242)作为特征提取网络,DarkNet53 基本采用了全卷积网络,用步长为2的卷积操作替代了池化层,同时添加了 Residual 单元,避免在网络层数过深时发生梯度弥散。 1. 特征提取网络。YOLOv3使用 [DarkNet53](https://arxiv.org/abs/1612.08242)作为特征提取网络,DarkNet53 基本采用了全卷积网络,用步长为2的卷积操作替代了池化层,同时添加了 Residual 单元,避免在网络层数过深时发生梯度弥散。
2. 特征融合层。为了解决之前YOLO版本对小目标不敏感的问题,YOLOv3采用了3个不同尺度的特征图来进行目标检测,分别为13*13,26*26,52*52,用来检测大、中、小三种目标。特征融合层选取 DarkNet 产出的三种尺度特征图作为输入,借鉴了FPN(feature pyramid networks)的思想,通过一系列的卷积层和上采样对各尺度的特征图进行融合。 2. 特征融合层。为了解决之前YOLO版本对小目标不敏感的问题,YOLOv3采用了3个不同尺度的特征图来进行目标检测,分别为13\*13,26\*26,52\*52,用来检测大、中、小三种目标。特征融合层选取 DarkNet 产出的三种尺度特征图作为输入,借鉴了FPN(feature pyramid networks)的思想,通过一系列的卷积层和上采样对各尺度的特征图进行融合。
3. 输出层。同样使用了全卷积结构,其中最后一个卷积层的卷积核个数是255:3*(80+4+1)=255,3表示一个grid cell包含3个bounding box,4表示框的4个坐标信息,1表示Confidence Score,80表示COCO数据集中80个类别的概率。 3. 输出层。同样使用了全卷积结构,其中最后一个卷积层的卷积核个数是255:3\*(80+4+1)=255,3表示一个grid cell包含3个bounding box,4表示框的4个坐标信息,1表示Confidence Score,80表示COCO数据集中80个类别的概率。
## 数据准备 ## 数据准备
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册