提交 431712ad 编写于 作者: T tink2123 提交者: dengkaipeng

add train_loss and eval_result

上级 dea15bd9
......@@ -99,8 +99,8 @@ To train the model, [cocoapi](https://github.com/cocodataset/cocoapi) is needed.
Training result is shown as below:
<p align="center">
<img src="image/train_loss.jpg" height=500 width=650 hspace='10'/> <br />
YOLOv3
<img src="image/train_loss.png" height="500" width="650" hspace="10"/><br />
Train Loss
</p>
## Evaluation
......@@ -116,10 +116,22 @@ Evaluation is to evaluate the performance of a trained model. This sample provid
- Set ```export CUDA_VISIBLE_DEVICES=0``` to specifiy one GPU to eval.
Evalutaion result is shown as below:
<p align="center">
<img src="image/mAP.jpg" height=500 width=650 hspace='10'/> <br />
YOLOv3 mAP
</p>
```text
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.370
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.581
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.401
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.236
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.403
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.480
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.297
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.450
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.466
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.309
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.500
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.586
```
## Inference and Visualization
......
......@@ -98,6 +98,11 @@ YOLOv3 的网络结构由基础特征提取网络、multi-scale特征融合层
* 采用momentum优化算法训练YOLOv3,momentum=0.9。
* 学习率采用warmup算法,前1000轮学习率从0.0线性增加至0.01。在400000,450000轮时使用0.1,0.1乘子进行学习率衰减,最大训练500000轮。
下图为模型训练结果:
<p align="center">
<img src="image/train_loss.png" height="500" width="650" hspace="10"/><br />
Train Loss
</p>
## 模型评估
......@@ -111,11 +116,23 @@ YOLOv3 的网络结构由基础特征提取网络、multi-scale特征融合层
- 通过设置export CUDA\_VISIBLE\_DEVICES=0指定单卡GPU评估。
下图为模型评估结果:
<p align="center">
<img src="image/mAP.jpg" height=500 width=650 hspace='10'/> <br />
YOLOv3
</p>
模型评估结果:
```text
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.370
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.581
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.401
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.236
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.403
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.480
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.297
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.450
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.466
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.309
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.500
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.586
```
## 模型推断及可视化
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册