train.py 16.5 KB
Newer Older
P
phlrain 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import time
import os
import random
import math
24
import contextlib
P
phlrain 已提交
25 26 27 28

import paddle
import paddle.fluid as fluid
import paddle.fluid.framework as framework
29
import paddle.fluid.profiler as profiler
P
phlrain 已提交
30 31 32 33 34 35 36 37
from paddle.fluid.executor import Executor

import reader

import sys
if sys.version[0] == '2':
    reload(sys)
    sys.setdefaultencoding("utf-8")
38
sys.path.append('../')
P
phlrain 已提交
39 40 41 42
import os
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"

from args import *
43
from models.model_check import check_cuda, check_version
Y
Yibing Liu 已提交
44
from models.language_model import lm_model
45
from config import RNNConfig
P
phlrain 已提交
46 47 48 49 50 51
import logging
import pickle

SEED = 123


52 53 54 55 56 57 58 59 60
@contextlib.contextmanager
def profile_context(profile=True):
    if profile:
        with profiler.profiler('All', 'total', '/tmp/paddingrnn.profile'):
            yield
    else:
        yield


P
phlrain 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
def get_current_model_para(train_prog, train_exe):
    param_list = train_prog.block(0).all_parameters()
    param_name_list = [p.name for p in param_list]

    vals = {}
    for p_name in param_name_list:
        p_array = np.array(fluid.global_scope().find_var(p_name).get_tensor())
        vals[p_name] = p_array

    return vals


def save_para_npz(train_prog, train_exe):
    print("begin to save model to model_base")
    param_list = train_prog.block(0).all_parameters()
    param_name_list = [p.name for p in param_list]

    vals = {}
    for p_name in param_name_list:
        p_array = np.array(fluid.global_scope().find_var(p_name).get_tensor())
        vals[p_name] = p_array

    emb = vals["embedding_para"]
    print("begin to save model to model_base")
    np.savez("mode_base", **vals)


88
def main():
P
phlrain 已提交
89
    args = parse_args()
90

91
    # check if set use_gpu=True in paddlepaddle cpu version
92
    check_cuda(args.use_gpu)
93 94
    # check if paddlepaddle version is satisfied
    check_version()
95

P
phlrain 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
    logger = logging.getLogger("lm")
    logger.setLevel(logging.INFO)
    formatter = logging.Formatter(
        '%(asctime)s - %(name)s - %(levelname)s - %(message)s')
    if args.log_path:
        file_handler = logging.FileHandler(args.log_path)
        file_handler.setLevel(logging.INFO)
        file_handler.setFormatter(formatter)
        logger.addHandler(file_handler)
    else:
        console_handler = logging.StreamHandler()
        console_handler.setLevel(logging.INFO)
        console_handler.setFormatter(formatter)
        logger.addHandler(console_handler)
    logger.info('Running with args : {}'.format(args))

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
    config = RNNConfig(args)

    # define train program
    main_program = fluid.Program()
    startup_program = fluid.Program()
    if args.enable_ce:
        startup_program.random_seed = SEED
    with fluid.program_guard(main_program, startup_program):
        with fluid.unique_name.guard():
            res_vars = lm_model.lm_model(
                config.hidden_size,
                config.vocab_size,
                config.batch_size,
                num_layers=config.num_layers,
                num_steps=config.num_steps,
                init_scale=config.init_scale,
                dropout=config.dropout,
                rnn_model=config.rnn_model,
L
Li Fuchen 已提交
130
                use_dataloader=args.use_dataloader)
131

L
Li Fuchen 已提交
132 133
            if args.use_dataloader:
                dataloader = res_vars[-1]
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
                res_vars = res_vars[:-1]
            loss, last_hidden, last_cell, feed_order = res_vars

            fluid.clip.set_gradient_clip(
                clip=fluid.clip.GradientClipByGlobalNorm(
                    clip_norm=config.max_grad_norm))

            learning_rate = fluid.layers.create_global_var(
                name="learning_rate",
                shape=[1],
                value=1.0,
                dtype='float32',
                persistable=True)

            optimizer = fluid.optimizer.SGD(learning_rate=learning_rate)
            optimizer.minimize(loss)

    # define inference program
    inference_program = fluid.Program()
    inference_startup_program = fluid.Program()
    with fluid.program_guard(inference_program, inference_startup_program):
        with fluid.unique_name.guard():
            lm_model.lm_model(
                config.hidden_size,
                config.vocab_size,
                config.batch_size,
                num_layers=config.num_layers,
                num_steps=config.num_steps,
                init_scale=config.init_scale,
                dropout=config.dropout,
                rnn_model=config.rnn_model,
L
Li Fuchen 已提交
165
                use_dataloader=False)
166 167 168
    # Some op behaves differently for train and inference, we need to call
    # this clone function to ensure every op is right for inference.
    inference_program = inference_program.clone(for_test=True)
P
phlrain 已提交
169

Y
Yibing Liu 已提交
170
    place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace()
P
phlrain 已提交
171
    exe = Executor(place)
172 173
    exe.run(startup_program)

174 175 176 177 178 179 180 181 182
    if args.init_from_pretrain_model:
        if not os.path.exists(args.init_from_pretrain_model + '.pdparams'):
            print(args.init_from_pretrain_model)
            raise Warning("The pretrained params do not exist.")
            return
        fluid.load(main_program, args.init_from_pretrain_model)
        print("finish initing model from pretrained params from %s" %
              (args.init_from_pretrain_model))

183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
    device_count = len(fluid.cuda_places()) if args.use_gpu else len(
        fluid.cpu_places())

    exec_strategy = fluid.ExecutionStrategy()
    exec_strategy.num_threads = device_count
    exec_strategy.num_iteration_per_drop_scope = 100

    build_strategy = fluid.BuildStrategy()
    build_strategy.fuse_all_optimizer_ops = True

    if args.parallel:
        train_program = fluid.compiler.CompiledProgram(
            main_program).with_data_parallel(
                loss_name=loss.name,
                build_strategy=build_strategy,
                exec_strategy=exec_strategy)
    else:
        train_program = fluid.compiler.CompiledProgram(main_program)
P
phlrain 已提交
201 202 203

    data_path = args.data_path
    print("begin to load data")
H
Hongyu Liu 已提交
204
    ptb_data = reader.get_ptb_data(data_path)
P
phlrain 已提交
205
    print("finished load data")
H
Hongyu Liu 已提交
206
    train_data, valid_data, test_data = ptb_data
P
phlrain 已提交
207

208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
    def generate_init_data():
        init_hidden = np.zeros(
            (config.num_layers, config.batch_size, config.hidden_size),
            dtype='float32')
        init_cell = np.zeros(
            (config.num_layers, config.batch_size, config.hidden_size),
            dtype='float32')
        return init_hidden, init_cell

    def generate_new_lr(epoch_id=0, device_count=1):
        new_lr = config.base_learning_rate * (config.lr_decay**max(
            epoch_id + 1 - config.epoch_start_decay, 0.0))
        lr = np.ones((device_count), dtype='float32') * new_lr
        return lr

    def prepare_input(batch,
                      init_hidden=None,
                      init_cell=None,
                      epoch_id=0,
                      with_lr=True,
                      device_count=1):
P
phlrain 已提交
229
        x, y = batch
230
        x = x.reshape((-1, config.num_steps, 1))
P
phlrain 已提交
231 232
        y = y.reshape((-1, 1))

233
        res = {}
P
phlrain 已提交
234 235
        res['x'] = x
        res['y'] = y
236 237 238 239
        if init_hidden is not None:
            res['init_hidden'] = init_hidden
        if init_cell is not None:
            res['init_cell'] = init_cell
P
phlrain 已提交
240
        if with_lr:
241
            res['learning_rate'] = generate_new_lr(epoch_id, device_count)
P
phlrain 已提交
242 243 244 245 246

        return res

    def eval(data):
        # when eval the batch_size set to 1
247 248
        eval_data_iter = reader.get_data_iter(data, config.batch_size,
                                              config.num_steps)
P
phlrain 已提交
249 250
        total_loss = 0.0
        iters = 0
251
        init_hidden, init_cell = generate_init_data()
P
phlrain 已提交
252 253
        for batch_id, batch in enumerate(eval_data_iter):
            input_data_feed = prepare_input(
254
                batch, init_hidden, init_cell, epoch_id=0, with_lr=False)
P
phlrain 已提交
255
            fetch_outs = exe.run(
256
                program=inference_program,
P
phlrain 已提交
257
                feed=input_data_feed,
L
liuhongyu 已提交
258
                fetch_list=[loss.name, last_hidden.name, last_cell.name],
H
Hongyu Liu 已提交
259
                use_program_cache=False)
P
phlrain 已提交
260

261
            cost_eval = np.array(fetch_outs[0])
P
phlrain 已提交
262 263 264
            init_hidden = np.array(fetch_outs[1])
            init_cell = np.array(fetch_outs[2])

265 266
            total_loss += cost_eval
            iters += config.num_steps
P
phlrain 已提交
267 268 269 270

        ppl = np.exp(total_loss / iters)
        return ppl

271 272 273 274 275
    def get_log_interval(data_len):
        num_batchs = data_len // config.batch_size
        epoch_size = (num_batchs - 1) // config.num_steps
        log_interval = max(1, epoch_size // 10)
        return log_interval
P
phlrain 已提交
276

277 278 279 280 281
    def train_an_epoch(epoch_id, batch_times):
        # get train epoch size
        log_interval = get_log_interval(len(train_data))
        train_data_iter = reader.get_data_iter(train_data, config.batch_size,
                                               config.num_steps)
P
phlrain 已提交
282 283 284

        total_loss = 0
        iters = 0
H
Hongyu Liu 已提交
285 286

        init_hidden, init_cell = generate_init_data()
P
phlrain 已提交
287 288
        for batch_id, batch in enumerate(train_data_iter):
            input_data_feed = prepare_input(
289 290 291 292 293 294 295 296 297
                batch,
                init_hidden=init_hidden,
                init_cell=init_cell,
                epoch_id=epoch_id,
                with_lr=True,
                device_count=device_count)
            batch_start_time = time.time()
            fetch_outs = exe.run(train_program,
                                 feed=input_data_feed,
298 299 300 301
                                 fetch_list=[
                                     loss.name, "learning_rate",
                                     last_hidden.name, last_cell.name
                                 ],
P
phlrain 已提交
302
                                 use_program_cache=True)
303 304
            batch_time = time.time() - batch_start_time
            batch_times.append(batch_time)
P
phlrain 已提交
305 306

            cost_train = np.array(fetch_outs[0])
307
            lr = np.array(fetch_outs[1])
H
Hongyu Liu 已提交
308 309
            init_hidden = np.array(fetch_outs[2])
            init_cell = np.array(fetch_outs[3])
P
phlrain 已提交
310 311

            total_loss += cost_train
312
            iters += config.num_steps
P
phlrain 已提交
313 314
            if batch_id > 0 and batch_id % log_interval == 0:
                ppl = np.exp(total_loss / iters)
315 316 317
                print(
                    "-- Epoch:[%d]; Batch:[%d]; Time: %.5f s; ppl: %.5f, lr: %.5f"
                    % (epoch_id, batch_id, batch_time, ppl[0], lr[0]))
P
phlrain 已提交
318
        ppl = np.exp(total_loss / iters)
319
        return ppl
P
phlrain 已提交
320

L
Li Fuchen 已提交
321
    def train_an_epoch_dataloader(epoch_id, batch_times):
322 323
        # get train epoch size
        log_interval = get_log_interval(len(train_data))
P
phlrain 已提交
324

325
        init_hidden, init_cell = generate_init_data()
Z
zhengya01 已提交
326

327 328 329
        total_loss = 0
        iters = 0

L
Li Fuchen 已提交
330
        dataloader.start()
331 332 333 334 335 336 337 338 339 340 341 342 343 344
        batch_id = 0
        try:
            while True:
                data_feeds = {}
                if batch_id == 0:
                    batch_time = 0
                    batch_start_time = time.time()
                else:
                    batch_time = time.time() - batch_start_time
                    batch_times.append(batch_time)
                    batch_start_time = time.time()

                new_lr = generate_new_lr(epoch_id, device_count)
                data_feeds['learning_rate'] = new_lr
H
Hongyu Liu 已提交
345 346
                data_feeds["init_hidden"] = init_hidden
                data_feeds["init_cell"] = init_cell
347 348 349

                fetch_outs = exe.run(train_program,
                                     feed=data_feeds,
350 351 352 353
                                     fetch_list=[
                                         loss.name, "learning_rate",
                                         last_hidden.name, last_cell.name
                                     ],
354 355 356 357
                                     use_program_cache=True)

                cost_train = np.array(fetch_outs[0])
                lr = np.array(fetch_outs[1])
358 359
                init_hidden = np.array(fetch_outs[2])
                init_cell = np.array(fetch_outs[3])
360 361 362 363 364 365 366 367 368 369 370 371

                total_loss += cost_train
                iters += config.num_steps
                if batch_id > 0 and (log_interval == 0 or
                                     batch_id % log_interval == 0):
                    ppl = np.exp(total_loss / iters)
                    print(
                        "-- Epoch:[%d]; Batch:[%d]; Time: %.5f s; ppl: %.5f, lr: %.5f"
                        % (epoch_id, batch_id, batch_time, ppl[0], lr[0]))

                batch_id += 1
        except fluid.core.EOFException:
L
Li Fuchen 已提交
372
            dataloader.reset()
373 374 375 376 377 378

        batch_times.append(time.time() - batch_start_time)
        ppl = np.exp(total_loss / iters)
        return ppl

    def train():
L
Li Fuchen 已提交
379
        if args.use_dataloader:
380 381 382 383 384 385 386 387 388 389 390

            def data_gen():
                data_iter_size = config.batch_size // device_count
                train_batches = reader.get_data_iter(train_data, data_iter_size,
                                                     config.num_steps)
                for batch in train_batches:
                    x, y = batch
                    x = x.reshape((-1, config.num_steps, 1))
                    y = y.reshape((-1, 1))
                    yield x, y

L
Li Fuchen 已提交
391
            dataloader.set_batch_generator(data_gen)
392 393 394 395 396

        total_time = 0.0
        for epoch_id in range(config.max_epoch):
            batch_times = []
            epoch_start_time = time.time()
L
Li Fuchen 已提交
397 398
            if args.use_dataloader:
                train_ppl = train_an_epoch_dataloader(epoch_id, batch_times)
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
            else:
                train_ppl = train_an_epoch(epoch_id, batch_times)
            epoch_time = time.time() - epoch_start_time
            total_time += epoch_time
            print(
                "\nTrain epoch:[%d]; epoch Time: %.5f; ppl: %.5f; avg_time: %.5f steps/s \n"
                % (epoch_id, epoch_time, train_ppl[0],
                   len(batch_times) / sum(batch_times)))

            # FIXME(zjl): ppl[0] increases as batch_size increases. 
            # We should find a better way to calculate ppl by normalizing batch_size. 
            if device_count == 1 and config.batch_size <= 20 and epoch_id == 0 and train_ppl[
                    0] > 1000:
                # for bad init, after first epoch, the loss is over 1000
                # no more need to continue
                print(
                    "Parameters are randomly initialized and not good this time because the loss is over 1000 after the first epoch."
                )
                print("Abort this training process and please start again.")
                return

            if epoch_id == config.max_epoch - 1 and args.enable_ce:
                # kpis
                print("ptblm\tlstm_language_model_%s_duration_card%d\t%s" %
                      (args.rnn_model, device_count,
                       total_time / config.max_epoch))
                print("ptblm\tlstm_language_model_%s_loss_card%d\t%s" %
                      (args.rnn_model, device_count, train_ppl[0]))

            # NOTE(zjl): sometimes we have not enough data for eval if batch_size is large, i.e., 2100
            # Just skip to avoid error
            def is_valid_data(data, batch_size, num_steps):
                data_len = len(data)
                batch_len = data_len // batch_size
                epoch_size = (batch_len - 1) // num_steps
                return epoch_size >= 1

            valid_data_valid = is_valid_data(valid_data, config.batch_size,
                                             config.num_steps)
            if valid_data_valid:
                valid_ppl = eval(valid_data)
                print("Valid ppl: %.5f" % valid_ppl[0])
            else:
                print(
                    'WARNING: length of valid_data is {}, which is not enough for batch_size {} and num_steps {}'.
                    format(
                        len(valid_data), config.batch_size, config.num_steps))

447 448 449
            save_model_dir = os.path.join(args.save_model_dir,
                                          str(epoch_id), "params")
            fluid.save(main_program, save_model_dir)
450
            print("Saved model to: %s.\n" % save_model_dir)
Z
zhengya01 已提交
451

452 453 454
    with profile_context(args.profile):
        train()

455 456 457 458 459 460
    test_ppl = eval(test_data)
    print("Test ppl:", test_ppl[0])


if __name__ == '__main__':
    main()