text_classification_dnn.py 4.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import sys
import paddle.v2 as paddle
import gzip


def fc_net(input_dim, class_dim=2, emb_dim=256):
F
fengjiayi 已提交
21
    # input layers
22 23 24 25
    data = paddle.layer.data("word",
                             paddle.data_type.integer_value_sequence(input_dim))
    lbl = paddle.layer.data("label", paddle.data_type.integer_value(class_dim))

F
fengjiayi 已提交
26
    # embedding layer
27
    emb = paddle.layer.embedding(input=data, size=emb_dim)
F
fengjiayi 已提交
28
    # max pooling
29 30 31
    seq_pool = paddle.layer.pooling(
        input=emb, pooling_type=paddle.pooling.Max())

F
fengjiayi 已提交
32
    # two hidden layers
33 34 35 36 37 38 39 40 41 42 43
    hd1 = paddle.layer.fc(
        input=seq_pool,
        size=128,
        act=paddle.activation.Tanh(),
        param_attr=paddle.attr.Param(initial_std=0.01))
    hd2 = paddle.layer.fc(
        input=hd1,
        size=32,
        act=paddle.activation.Tanh(),
        param_attr=paddle.attr.Param(initial_std=0.01))

F
fengjiayi 已提交
44
    # output layer
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
    output = paddle.layer.fc(
        input=hd2,
        size=class_dim,
        act=paddle.activation.Softmax(),
        param_attr=paddle.attr.Param(initial_std=0.1))

    cost = paddle.layer.classification_cost(input=output, label=lbl)

    return cost, output


def train_dnn_model(num_pass):
    # load word dictionary
    print 'load dictionary...'
    word_dict = paddle.dataset.imdb.word_dict()

    dict_dim = len(word_dict)
    class_dim = 2
    # define data reader
    train_reader = paddle.batch(
        paddle.reader.shuffle(
            lambda: paddle.dataset.imdb.train(word_dict), buf_size=1000),
        batch_size=100)
    test_reader = paddle.batch(
        lambda: paddle.dataset.imdb.test(word_dict), batch_size=100)

    # network config
    [cost, _] = fc_net(dict_dim, class_dim=class_dim)
    # create parameters
    parameters = paddle.parameters.create(cost)
    # create optimizer
    adam_optimizer = paddle.optimizer.Adam(
        learning_rate=2e-3,
        regularization=paddle.optimizer.L2Regularization(rate=8e-4),
        model_average=paddle.optimizer.ModelAverage(average_window=0.5))

    # create trainer
    trainer = paddle.trainer.SGD(
        cost=cost, parameters=parameters, update_equation=adam_optimizer)

    # Define end batch and end pass event handler
    def event_handler(event):
        if isinstance(event, paddle.event.EndIteration):
            if event.batch_id % 100 == 0:
                print "\nPass %d, Batch %d, Cost %f, %s" % (
                    event.pass_id, event.batch_id, event.cost, event.metrics)
            else:
                sys.stdout.write('.')
                sys.stdout.flush()
        if isinstance(event, paddle.event.EndPass):
            result = trainer.test(reader=test_reader, feeding=feeding)
            print "\nTest with Pass %d, %s" % (event.pass_id, result.metrics)
            with gzip.open("dnn_params.tar.gz", 'w') as f:
                parameters.to_tar(f)

    # begin training network
    feeding = {'word': 0, 'label': 1}
    trainer.train(
        reader=train_reader,
        event_handler=event_handler,
        feeding=feeding,
        num_passes=num_pass)

    print("Training finished.")


def dnn_infer():
    print("Begin to predict...")

    word_dict = paddle.dataset.imdb.word_dict()
    dict_dim = len(word_dict)
    class_dim = 2

    [_, output] = fc_net(dict_dim, class_dim=class_dim)
    parameters = paddle.parameters.Parameters.from_tar(
        gzip.open("dnn_params.tar.gz"))

    infer_data = []
    infer_label_data = []
    infer_data_num = 100
    for item in paddle.dataset.imdb.test(word_dict):
        infer_data.append([item[0]])
        infer_label_data.append(item[1])
        if len(infer_data) == infer_data_num:
            break

    predictions = paddle.infer(
        output_layer=output,
        parameters=parameters,
        input=infer_data,
        field=['value'])
    for i, prob in enumerate(predictions):
        print prob, infer_label_data[i]


if __name__ == "__main__":
    paddle.init(use_gpu=False, trainer_count=4)
F
fengjiayi 已提交
142
    train_dnn_model(num_pass=5)
143
    dnn_infer()